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Approximately 45% of the human genome is comprised of transposable elements (TEs). Results from the Human Genome 
Project have emphasized the biological importance of TEs. Many studies have revealed that TEs are not simply “junk” DNA, 
but rather, they play various roles in processes, including genome evolution, gene expression regulation, genetic instability, 
and cancer disposition. The effects of TE insertion in the genome varies from negligible to disease conditions. For the past 
two decades, many studies have shown that TEs are the causative factors of various genetic disorders and cancer. TEs are a 
subject of interest worldwide, not only in terms of their clinical aspects but also in basic research, such as evolutionary 
tracking. Although active TEs contribute to genetic instability and disease states, non-long terminal repeat transposons are 
well studied, and their roles in these processes have been confirmed. In this review, we will give an overview of the 
importance of TEs in studying genome evolution and genetic instability, and we suggest that further in-depth studies on the 
mechanisms related to these phenomena will be useful for both evolutionary tracking and clinical diagnostics. 
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Introduction

Transposable elements (TEs) are DNA sequences that are 
capable of integrating into the genome at a new site within 
the cell of its origin. Sometimes, the change in their 
positions creates or reverses mutations, thereby altering the 
cell's genotype. Barbara McClintock's discovery of these 
“jumping genes” earned her a Nobel Prize in 1983 [1]. TEs 
are prevalent in all plants and animals. In mammals, TEs and 
their remnants make up almost half of the genome, and in 
some plants, they constitute up to 90% of the genome [2]. 
TEs consist of two major classes: DNA transposons and 
retrotransposons. DNA transposons are capable of moving 
and inserting into new genomic sites [3]. Although they are 
currently not mobile in the human genome, they were active 
during early primate evolution until ∼37 million years ago 
(Mya) [4]. Retrotransposons replicate by forming RNA 
intermediates, which are then reverse-transcribed to make 
DNA sequences and inserted into new genomic locations 
[4]. Based on the presence of long terminal repeats (LTRs), 

retrotransposons are further classified into two groups: LTR 
and non-LTR transposons. In humans, LTR elements are 
called human endogenous retroviruses (HERVs). It is 
estimated that HERVs inserted into the human genome ＞25 
Mya [5, 6]. Non-LTR retrotransposons include long inter-
spersed element 1 (LINE-1 or L1), Alu, and SVA elements. 
Studies have revealed that these are the only TEs that are 
currently active in humans [7-11]. 

TEs have driven genome evolution in multiple ways. 
Retrotransposons comprise a large proportion of the 
genome, especially in plants and mammals. The effect of the 
increase in retrotransposons has been tolerated during 
evolution. Accumulating literature has proven that mobile 
elements are useful tools for studying genome evolution and 
gene function [12]. A comparative analysis has shown that 
the human genome makes 655 perfect full-length matches 
with vertebrate TEs. TE insertions have been shown to have 
many effects, such as regulation of gene expression, in-
creased recombination rate, and unequal crossover. TE 
insertions have caused many effective changes in the human 
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Fig. 1. Classification and structure of transposable elements. DRs, direct repeats; ITRs, inverted terminal repeats; TSD, tandem site 
duplication; LTRs, long terminal repeats; UTRs, untranslated region; ORF, open reading frame; L, left; R, right; SINE, short interspersed
nuclear element. 

genome, and the selected changes have been responsible for 
the evolution of the human lineage [13]. The human genome 
contains many recently inserted active TEs, such as AluYa5, 
AluYb8, and AluYc1. Alu elements are a family of primate- 
specific short interspersed DNA elements. Various studies 
have proposed that Alu element insertions have created 
many variants that can potentially be used as DNA markers 
in human population studies, as well as in forensic analyses. 
Kass et al. [14] have identified an Alu-based polymorphism 
that consists of four alleles, from which the evolutionary 
order can be predicted. 

The effects of TEs on genetic instability and human 
diseases have not been thoroughly studied. The mobile 
property of TEs is the reason for their mutational potential. 
TE insertions may create a broad range of effects on humans, 
ranging from silent mutations to alternative splicing. Both 
insertions and excisions of TEs can cause genomic instabil-
ity, thus causing many human diseases, including genetic 
disorders, psychiatric problems, and cancer [15-21]. Fur-
thermore, TE insertions may result in insertional mutations, 
non-allelic homologous recombination (NAHR), creation of 

novel regulatory sequences, and epigenetic changes [22]. A 
large number of human diseases that are associated with 
NAHR between Alu elements have been reported [22]. 
Technical advances have helped to detect TE-associated dis-
eases and develop novel biomarkers for clinical diagnostics. 
Computational tools have been developed to study the 
dynamics of transposition at a population level, thus pro-
viding critical insights into the mechanisms behind genome 
evolution. Finally, combining the genomic materials from 
diverse individuals followed by high-throughput sequencing 
can enhance the significance of characterizing genomic 
polymorphisms in a population [23].

In this review, we will provide updates on our current 
understanding of the roles of TEs in genome evolution and 
genetic instability. Further, we focus on how their activity 
affects gene expression and causes disease states in human 
beings.
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Role of Retrotransposons in Human Genome 
Evolution

Brain evolution is an important process that accelerated 
the evolution of humans. This occurred due to natural 
selection and genomic variation, a major source of which has 
been TE insertions. TE insertions contributed markedly to 
variation and increased the speed of evolution [24-26]. 
Furthermore, they increase the recombination rate, in 
addition to affecting genes and their expression [24, 26]. 
From an evolutionary perspective, humans are unique in the 
speed of evolution and the number and activity of TEs. It is 
proposed that the high frequency of TE insertions is 
responsible at least in part for the rapid evolution of humans. 
It is speculated that some sets of genes might have been 
activated or suppressed due to variations caused by TE 
insertions, which in turn increased the chances for evolution 
[13]. There has been a prominent impact of retrotrans-
posons on human evolution at the genomic level. Retro-
transposons have shaped human evolution at the RNA level 
through various mechanisms, such as modulation of gene 
expression, RNA editing, and epigenetic regulation [27].

LTR retrotransposons

In humans, LTR retrotransposons are called HERVs (Fig. 
1), which constitute 5% of the genome. The human genome 
shows 99% similarity with chimpanzees and bonobos. 
Hence, the differences between these species are likely to be 
in regulatory sequences: promoters, enhancers, polyadeny-
lation signals, and transcription factor (TF) binding sites. 
The LTRs of HERVs help in regulating the expression of 
nearby genes. The active human-specific LTRs that have been 
identified belong to the HERV-K family. It is proposed that 
some of these endogenous retroviruses may have integrated 
into regulatory regions of the human genome and that they 
eventually contributed to human evolution [28]. Khodo-
sevich et al. [28] suggested that regulatory sequences found 
in retroviral LTRs may alter the expression of (or even 
inactivate) adjacent genes. On the other hand, HERV 
insertion may benefit the host, for example, by reverting 
harmful mutation [28].

Non-LTR retrotransposon

Human non-LTR retroposons include both active (L1, Alu, 
and SVA) and inactive elements (L2 and mammalian-wide 
interspersed repeat). Although more than 500,000 copies of 
L1 elements are found in the human genome, only 100 
copies are known to be intact [29]. An intact L1 element is 
approximately 6 kilobases (kb) in length, with a 5' un-
translated region (UTR) containing an internal RNA poly-
merase II promoter, two open reading frames (ORF1 and 

ORF2), and a 3' UTR (Fig. 1) [29, 30]. L1 elements are the 
only autonomous TEs in the human genome because of their 
retrotransposition property, called target-primed reverse 
transcription [27]. Alu elements are often called “a parasite’s 
parasite,” because they do not code for a polymerase and, 
hence, are non-autonomous in nature. Alu elements depend 
on L1 elements for retrotransposition machinery [31-33]. 
However, they are considered the most successful TEs in the 
human genome in terms of copy number [27]. An intact SVA 
element is approximately 2 kb in length, which includes a 
hexamer repeat, an Alu-like region, a variable number of 
tandem repeats, and a HERV-K10-like sequence. SVA 
elements are also non-autonomous and most likely depend 
on L1 retrotransposition machinery [34, 35].

Two key features of non-LTR retrotransposons that con-
trol retrotransposition activity are high copy number and 
continued activity over millions of years [5, 27]. From an 
evolutionary perspective, the observed uniqueness of non- 
LTR retrotransposons is due to their vertical transfer in both 
primates and mammals [4, 5, 36]. Amplification rates 
among non-LTR retrotransposons are not uniform (Alu, 40 
Mya; L1, 12－40 Mya; SVA, 6 Mya) [27]. Among non-LTR 
retrotransposons, Alu elements are the most thoroughly 
studied in relation to evolution. Alu repeats may cause 
genomic diversity in various ways. Their amplification has 
enabled them to become the largest family of mobile 
elements in the human genome. It is estimated that thou-
sands of Alu elements have integrated into the human 
genome since the divergence of humans and African apes 
[37-40]. Although some Alu insertions have caused harmful 
mutations, most have contributed to genetic diversity [8]. 
Moreover, Alu repeats have also influenced the accumulation 
of single-nucleotide polymorphisms in the genome [30, 40, 
41]. From previous reports, it is evident that most of the 
recent Alu insertions are the source of genetic variations, 
which have been useful for studying both the relationships 
between populations and the evolution and organization of 
tandem-arrayed gene families [37-40]. Batzer and Deninger 
[42] suggested that the Alu insertion, in relation to genetic 
variation, may also be useful in generating species-specific 
genetic markers.

Roles of TEs in Genomic Instability and Dis-
ease States

TEs can cause genomic instability either by insertions or 
by rearrangements in the genome. Notably, structural 
variations in the human genome are the primary cause of 
inter-individual variability. Structural variations include 
insertion, deletion, inversion, duplication, and translo-
cation. The characteristics of TEs, such as abundance in the 
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Table 1. Disease conditions associated with transposable element
(TE) insertions

Gene Type of TE Disease/genetic disorder

APC Alu Colon cancer [63]
BRCA1 Alu Breast cancer/ovarian cancer [48]
BRCA2 Alu Breast cancer/ovarian cancer [17]
MLVI2 Alu Leukemia [64]
NF1 Alu Neurofibromatosis type I [65]
APC Alu Cancer of the colon [8, 20]
BAAT LTR Hypercholanemia [66]
MSLN LTR Cancer [67]
ADH1C LTR Role in alcoholism [68]
HSD17B1 LTR Breast cancer [69]
FKTN L1 Fukuyama-type congenital muscular 

dystrophy [70, 71]
DMD L1 Duchenne muscular dystrophy [71]
CYBB L1 Chronic granulomatous disease [72]
RP2 L1 X-linked retinitis pigmentosa [73]
F8 Alu Hemophilia A [74]
CYBB L1 Chronic granulomatous disease [72]
U2AF65 Alu Loss of hnRNP C binding, leading to 

aberrant exonization [75]
OAT Alu OAT deficiency [76]
COL4A3 Alu Alport syndrome [77]
GUSB Alu Sly syndrome [78]
PDHX L1 Pyruvate dehydrogenase complex 

deficiency [79]
RPS6KA3 L1 Coffin-Lowry syndrome [80]

LTR, long terminal repeat.

genome, high sequence identity, and ability to move, make 
them major contributors to genomic instability [5, 27, 43]. 
Recent studies have revealed the implications of TEs in 
genomic instability and human genome evolution [44]. 
Mutations associated with TE insertions are well studied, 
and approximately 0.3% of all mutations are caused by 
retrotransposon insertions [27]. Such insertions can be 
deleterious by disrupting the regulatory sequences of a gene. 
When a TE inserts within an exon, it may change the ORF, 
such that it codes for an aberrant peptide, or it may even 
cause missense or nonsense mutations. On the other hand, 
if it is inserted into an intronic region, it may cause an 
alternative splicing event by introducing novel splice sites, 
disrupting the canonical splice site, or introducing a 
polyadenylation signal [8-11, 42, 43]. In some instances, TE 
insertion into intronic regions can cause mRNA des-
tabilization, thereby reducing gene expression [45]. Simil-
arly, some studies have suggested that TE insertion into the 
5' or 3' region of a gene may alter its expression [46-48]. 
Thus, such a change in gene expression may, in turn, change 
the equilibrium of regulatory networks and result in disease 
conditions (reviewed in Konkel and Batzer [43]). 

The currently active non-LTR transposons, L1, SVA, and 

Alu, are reported to be the causative factors of many genetic 
disorders, such as hemophilia, Apert syndrome, familial 
hypercholesterolemia, and colon and breast cancer (Table 1) 
[8, 10, 11, 27]. Among the reported TE-mediated genetic 
disorders, X-linked diseases are more abundant than 
autosomal diseases [11, 27, 45], most of which are caused by 
L1 insertions. However, the phenomenon behind L1 and 
X-linked genetic disorders has not yet been revealed. The 
breast cancer 2 (BRCA2) gene, associated with breast and 
ovarian cancers, has been reported to be disrupted by 
multiple non-LTR TE insertions [9, 18, 49]. There are some 
reports that the same location of a gene may undergo 
multiple insertions (e.g., Alu and L1 insertions in the 
adenomatous polyposis coli gene) (Table 1). 

It has also been proposed that inverted repeats are likely to 
be hotspots of genomic instability [50]. Closely occurring 
Alu repeats form hairpin structures that are prone to 
double-strand breaks (DSBs) and excision [50, 51]. In 
addition, de novo Alu insertions may create new inverted 
repeats that result in rearrangements in future generations 
[43]. Due to the abundance of TEs in the human genome, the 
probability of TE-mediated NAHR translocations is high. 
Kolomietz et al. [52] reported that Alu elements are often 
found in and around the breakage points of translocations 
and result in diseases [53]. Some studies have analyzed the 
human genome using the chimpanzee reference genome and 
found that deletions that are caused by Alu-mediated NAHRs 
are 9 times more frequent than L1-mediated NAHRs in the 
human genome [54, 55]. Alu-mediated NAHRs are known 
to be associated with various genetic disorders and cancer 
(Table 1) [8, 10]. L1 endonuclease creates abundant DSBs 
that are required for retrotransposition in mammalian cells 
and eventually contribute to genomic instability [56]. How-
ever, it has been difficult to define this in an experimental 
condition, as physiological conditions cannot be simulated in 
vitro. Moreover, it is also difficult to distinguish DSBs caused 
by L1 from DSBs caused by other mechanisms in vivo [44, 
56].

From recent studies, it is apparent that the methylation 
state of DNA is associated with cancer [57]. TEs−in 
particular, the promoters of L1 elements−are reported to be 
demethylated in cancer cells [58, 59]. On the other hand, the 
methylation of retrotransposons is supposed to be a defense 
mechanism against retrotransposition in somatic cells [60]. 
It has also been reported by some studies that the L1 
transcription rate is increased in hypomethylated cancer 
cells [58, 61]. Demethylation of TE promoters may result in 
their activation, which in turn could modify the TF level in 
the cell. It is possible that such changes in TF levels lead to 
alterations in global gene expression [57]. In addition, 
demethylation may result in the activation of the L1 
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antisense promoter, which may eventually produce cancer- 
associated chimeric transcripts [62, 63].

Conclusion and Future Perspectives

Taken together, the mechanisms discussed above have 
demonstrated the considerable impact of TEs on human 
genome evolution, genetic instability, and disease occurrence. 
There has been a recent increase in studies demonstrating 
the roles of TEs in multiple molecular processes. Impor-
tantly, several studies have found an association between 
TEs and cancer conditions. Technological developments 
have led to promising techniques (e.g., next-generation 
sequencing) that will assist researchers in studying, under-
standing, and confirming the role of TEs in genetic instability 
and diseases. Such progress may lead to the development of 
novel therapeutic strategies in the near future, such as 
personalized gene therapy for the treatment of genetic 
disorders. The clinical community has already realized the 
importance of personalized cancer treatments and is moving 
toward excellence in such treatment strategies. Therefore, 
we believe that in-depth studies on the role(s) of TEs in 
evolution, the epigenetic control of gene expression, and 
clinical aspects will be of paramount importance in 
uncovering novel mechanisms that can be targeted for 
therapeutic intervention. 
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