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In cancer genome studies, the annotation of newly detected oncogene/tumor suppressor gene candidates is a challenging 
process. We propose using concept lattice analysis for the annotation and interpretation of genes having candidate somatic 
mutations in whole-exome sequencing in acute myeloid leukemia (AML). We selected 45 highly mutated genes with 
whole-exome sequencing in 10 normal matched samples of the AML-M2 subtype. To evaluate these genes, we performed 
concept lattice analysis and annotated these genes with existing knowledge databases.
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Introduction

Acute myeloid leukemia (AML) is one of the most well- 
studied diseases in the genomic research area [1, 2]. AML 
occurs usually in middle-aged people and is diagnosed by 
increasing leukemic myeloblasts in blood over 30% [3]. AML 
is a genetically heterogeneous disease, since 1/3 of AML 
patients have chromosomal rearrangements, like t(8;21) and 
t(15;17), but other AML patients have normal karyotypes 
[4]. With recent advances of high-throughput genomic 
technology, a favorable prognosis has been observed with 
some genetic changes in cytogenetically normal AML [5]. 
These results were reflected by the World Health 
Organization (WHO) diagnostic criteria; the NMP1 and 
CEBPA mutations were included in the 2008 revision of 
these criteria [6]. The molecular change of AML is con-
sidered to be the accumulation of somatic mutations in 
hematopoietic progenitor cells [7]. Next-generation sequen-
cing technology gave us new insights into the clonal hete-
rogeneity of leukemic mutations so that we can make an 
explanation why some of these mutations are highly re-

producible but others are very rare [8]. Still, in 30% of 
cytogenetically normal AML, the genetic causality origin or 
strongly associated genetic changes have not yet been 
discovered [9, 10]. 

With advances of high-throughput technology, discovery 
of disease-associated genes is growing [11]. As a conse-
quence, the genetic knowledge databases are growing ra-
pidly. Accordingly, the annotation of candidate causal genes 
in genetic studies is a very challenging process for resear-
chers. We propose a workflow of the detection of somatic 
mutation candidates in 10 normal matched AML samples 
and introduce concept lattice analysis for clustering the 
samples that have highly mutated genes in common.

Methods
Primacy sequence analysis

We received the fastq files of whole-exome sequencing 
results of tumor and matched normal sample data of 10 AML 
patients from the Korea Genome Organization in December 
2012. There were no patient-related medical or charac-
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Fig. 1. Primary sequence analysis 
pipeline.

Fig. 2. Workflow of detection of somatic mutation candidate from 
exome sequencing of normal matched samples from 10 acute 
myeloid leukemia.

teristic data. We aligned the sequencing reads to the human 
reference genome (hg 19, GRCh37) from USCC by BWA 
0.6.2 [12] (Figs. 1 and 2). To filter the known single nucle-
otide polymorphisms (SNPs), we used dbSNP bulid 137. We 
removed PCR duplicates and filtering low-quality SNPs by 
Samtools 0.1.18 [13], Picard 1.68 [14], and GATK 2.3.4 
[15]. After the filtering process, the SAM file was converted 
to VCF file by VCF Tools 0.1.10 [16]. For detecting somatic 
mutation candidates, we obtained the difference in VCF files 
between tumor and normal samples. For annotation of these 
somatic mutation candidates, we used the ANNOVAR tool 
[17]. 

Formal concept analysis

We used formal concept analysis (FCA) for the con-
struction of hierarchical relationships among samples 
sharing highly mutated genes [18]. FCA is a useful method 
in conceptual clustering of objects, attributes, and their 
binary relationship. In FCA, the sets of formal objects and 
formal attributes together with their relation to each other 
form a “formal context,” which can be represented by a 
crosstable. In our case, the objects are 10 AML samples, and 
the attributes are 45 highly mutated genes. We defined the 
formal context as K = (G, M, I), where G is a set of objects 
(i.e., samples), M is a set of attributes (i.e., mutated genes), 
and I ⊆ G × M is the incidence relations where (g, m) ⊆ I if 
object g has attribute m. For A ⊆ G and B ⊆ M, we define the 
operators A' = {m ∈ M|gIm for all g ∈ A} (i.e., the set of 
attributes common to the objects in A) and B' = {g ∈ G|gIm 
for all m ∈ B} (i.e., the set of objects common to the 
attributes in B). A pair of (A, B) is a formal concept of k(G, 
M, I) if and only if  A ⊆ G, B ⊆ M, A' = B, and A = B'. A is 
called the extent and B is the intent of the concept (A, B). The 
extent consists of all objects belonging to the concept while 
the intent contains all attributes shared by the objects. The 
concept of a given context is naturally ordered by the 
subconcept-superconcept relation, defined by (A1, B1) ≤ 

(A2, B2): ＜=＞ A1 ⊆ A2 (＜=＞ B2 ⊆ B1).

The ordered set of all concepts of the context (G, M, I) is 
denoted by C(G, M, I) and is called the concept lattice of (G, 
M, I). We represent the structure of this concept lattice with 
a Hasse diagram, in which nodes are the concepts and the 
edges correspond to the neighborhood relationship among 
the concepts. All concepts above an object label (below the 
attribute label) include that object (attribute). The top 
element of a lattice is a unit concept, representing a concept 
that contains all objects. The bottom element is a zero 
concept having no object.

Results
Overview of mutations 

We have identified 12,908 somatic mutation candidates in 
10 AML sequenced exomes, including 1,281 point muta-
tions, 625 insertion/deletions (Indels) (Table 1, Fig. 3). The 
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Samle 
No.　

Synonymous
SNP NS SNPs Stopgain 

SNV
Stoploss 

SNV
Frameshift 
substitution

Frameshift 
insertion

Frameshift 
deletion

Nonframeshift 
Indel Unknown

1 729 409 23 2 0 26 34 10 21
2 603 352 17 2 0 19 29  9 12
3 840 482 22 0 1 30 40  6 23
4 568 333 22 1 0 18 30  5 13
5 838 480 33 0 1 32 35 12 19
6 1,099 649 47 3 0 21 39  5 40
7 751 411 33 3 1 31 34  7 15
8 828 469 36 3 0 30 26  4 21
9 534 317 21 0 1 21  9  4 15

10 693 395 28 0 1 19 34  6 23
Mean 748.3 429.7 28.2 1.4 0.5 24.7 31  6.8 20.2

SD 166.25  97.16  9.07 1.34 0.5  5.65  8.83  2.69  8.05

AML, acute myeloid leukemia; SNP, single nucleotide polymorphism; NS, nonsynonymous; SNV, single nucleotide variation.

Table 1. The distribution of somatic mutation candidates in 10 AML samples

Fig. 3. Distribution of somatic mutation candidates in all samples.
NS SNV, nonsynonymous single nucleotide variation.

point mutations include 7,483 synonymous single nucle-
otide variations (SNVs), 4,297 nonsynonymous SNVs, 282 
stopgain SNVs, 14 stoploss SNVs, and 5 frameshift sub-
stitutions, and the Indels include 247 frame shift insertions, 
310 frameshift deletions, and 68 nonframe shifts (Fig. 4). 
For each patient, the average nonsynonymous mutation 
count was 429.7 (SD, 97.16).

About 342 to 665 genes have nonsynonymous somatic 
mutation candidates at least once in each AML sample (Table 
2). Recurrent mutated genes were observed in all samples. 

Mutation analysis

The most frequently mutated genes across all samples 
were USP9Y and MUC5B; these genes were mutated in 5 
samples. These genes were also highly mutated in each 
sample; for USP9Y genes, it had 6 nonsynonymous muta-
tions in sample 3. We have selected 45 highly mutated genes 
(1.5%) from 2981 mutated genes. We defined highly mu-
tated genes as genes having 3 or more nonsynonymous 
mutations in each sample (Table 3). In a comparison of 
mutations with the COSMIC database [19], among 45 
highly mutated genes, 21 genes matched to hematopoietic 
and lymphoid tissue malignancy terms, and 21 genes 
matched to other cancer types. In 3 genes, there was no 
matched term in COSMIC (Table 4).

We used the concept lattice to construct the hierarchical 
relationship between the samples that had 45 highly 
mutated genes. Concept Biolattice analysis is a mathe-
matical framework based on concept lattice analysis for 
better biological interpretation of genomic data. The top 
element of a lattice is a unit concept, representing a concept 
that contains all objects. The bottom element is a zero 
concept having no object [20, 21]. For comparing with the 
Concept lattice (Fig. 5), we also performed hierarchical 
clustering analysis by Ward method. In hierarchical clus-
tering, cluster 1 has 5 samples (nos. 1, 2, 5, 9, and 10), 
cluster 2 has 2 samples (nos. 4 and 7), and others have 1 
sample each (Fig. 6). We divided the samples into 4 
subgroups by interpretation of the concept lattice result (Fig. 
7). Lattice subgroup 1 shared SYNE1 gene mutation, and 
samples 3, 4, and 7 were included in this subgroup. 
Subgroup 2 was comprised of 5 samples (nos. 1, 2, 5, 6, and 
9) that had MUC5 gene mutations in common. Samples 10 
and 8 could be isolated by the uniqueness of their mutated 
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Sample no. No. with more than 
1 mutated genes

No. with more than 
2 mutated genes

No. with more than 
3 mutated genes

No. with more than 
4 mutated genes

1 454 30  7 3
2 369 31  3 1
3 513 47  9 3
4 370 30  4 0
5 532 39  7 3
6 665 72 14 5
7 465 41  5 2
8 506 46 10 1
9 342 20  2 0

10 442 29  5 1
Mean   465.8  38.5    6.6  1.9

Table 2. Classification of genes according to the count of mutations in each sample

Sample 
no. Symbols of 3 or more mutated genes

1 USP9Ya, MUC5Ba, TCF19c, MUC2c, C6orf10, VPS13A, TMEM131
2 USP9Ya, MUC5Ba, BRD2c 
3 USP9Ya, SYNE1b, CDH23, TCF19c, MYH10, KIF16B, ITGAX, GRIK1, DMBT1
4 SYNE1b, LAMC3, HELZ2, DNAH8
5 MUC5Ba, MUC6b, TCF19c, FOXD4L6, ZC3H7B, MYOM2, USP48
6 USP9Ya, MUC5Ba, MUC6b, CDSNc, WDR81, DMBT1, CYFIP1, TMUB2, PITRM1, PCDHB10, MUC17, KIFC2, KIAA1199,

ABCA7
7 USP9Ya, SYNE1b, THAP3, CYFIP1, ANKRD18A 
8 MUC2c, HELZ2, TNRC6C, TNRC18, TECTA, MUC16, MLL3, KANSL1, GPR98, FAM195A
9 MUC5Ba, CDSNc 

10 MUC6b, BRD2c, CDH23, OR6V1, DNAH17
aGenes mutated in 5 samples; bGenes mutated in 3 samples; cGenes mutated in 2 samples.

Table 3. List of 3 more mutated genes in 10 AML samples 

Fig. 4. Distribution of nonsynonymous somatic mutations in 10 acute myeloid leukemia samples. NS SNPs, nonsynonymous single nucleotide
polymorphisms.
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Fig. 5. Concept lattice of 45 genes 
and 10 acute myeloid leukemia 
patients having 3 or more non- 
synonymous mutations, annotated 
by COSMIC database. Red rectan- 
gles represent annotated hemato- 
poietic and lymphoid tissue malig- 
nancy; yellow rectangles represent 
other cancer type annotated in the 
COSMIC database.

COSMIC 
cancer type

Hematopoietic and 
lymphoid_tissue

Other cancer 
type None

Gene symbol   ABCA7 BRD2 KANSL1
 ANKRD18A C6orf10 FOXD4L6
 CDH23 CDSN HELZ2
 CYFIP1 DMBT1
 DNAH17 GRIK1
 DNAH8 KIF16B
 FAM195A KIFC2
 GPR98 MUC5B
 ITGAX MUC6
 KIAA1199 MYH10
 LAMC3 OR6V1
 MLL3 PITRM1
 MUC16 TCF19
 MUC17 THAP3
 MUC2 TMUB2
 MYOM2 TNRC18
 PCDHB10 TNRC6C
 SYNE1 USP48
 TECTA USP9Y
 TMEM131 WDR81
 VPS13A ZC3H7B

Count       21 21 3

Table 4. Comparison of list of 3 more mutated genes with 
COMIC database

Fig. 6. Hierarchical clustering of samples by binarized score of 45
highly mutated gene states.

gene sharing pattern.

Discussion

In this study, we proposed a workflow of matched normal 
AML exome sequencing analysis and the framework for 
defining sample subgroups. We observed every sample 
having a nonsynonymous mutation associated with hema-
tological and lymphoid malignancy genes, but the candidate 

oncogenes showed diverse characters.
We selected 45 genes that had 3 or more nonsynonymous 

mutations and performed hierarchical clustering analysis of 
the samples by these genes. In classic hierarchical clustering 
analysis by Ward’s method, we could not identify the genetic 
relationship of those clusters. On the other hand, the result 
of concept lattice analysis gave us insight into the mutational 
pattern of each sample.

In subgroup 1, samples 3, 4, and 7 shared SYNE1 gene 
mutations. SYNE1 gene encodes a spectrin repeat-con-
taining protein expressed in skeletal and smooth muscle and 
peripheral blood lymphocytes that localizes to the nuclear 
membrane [21]. This gene is not a well-known leukemic 
gene but is observed in some hematological malignancies 
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Fig. 7. Subgroup analysis by concept lattice. (A) Subgroup 1 shares SYNE1 mutation in samples 3, 4 and 7. (B) Subgroup 2 shares MUC5B
mutation in samples 1, 2, 5, 6, and 9. Continued on next page.

and other cancer types [22]. In glioblastoma, SYNE1 muta-
tion is significantly correlated with the overexpression of 
several known glioblastoma survival genes [23]. In the case 
of sample 3, the ITGAX gene, encoding ankyrin repeat 
domain 18A, was mutated. This gene is well known by the 
association with leukemia [24] and lung cancer [25]. For 

sample 4, the possible oncogene is LAMC3. LAMC3 gene 
encodes laminins, which are the major non-collagenous 
constituent of basement membrane. LAMC3 mutations are 
associated with several cancers, including colon cancer, lung 
cancer, and melanoma, and candidate tumor suppressor 
genes in bladder transitional cell carcinoma [26]. LAMC3 is 
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Fig. 7. Continued from previous page. (C) Subgroup 3 sample 8 only has mutated genes, such as MUC2 and HELZ2. (D) Subgroup 4
has sample 10, having only mutated genes, like MUC6, CDH23, BRD2, OR6V1, and DNAH17.

involved in the phosphatidylinositol 3-kinase–Akt signaling 
pathway, since it has a role in cell adhesion. The ANKRD18A 
gene is the oncogene candidate for sample 7 and is a novel 
epigenetic regulation gene in lung cancer [25]. Therefore, it 
is possible that the pair relationship of those genes 

(ITGAX-SYNE1, LAMC3- SYNE1, and ANKRD18A-SYNE1) 
could contribute together to evolve the leukemic cell 
transformation. 

The major limitation of our study is that we could not 
validate the mutation results by Sanger method or deep 
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sequencing. We selected highly mutated genes having 3 
mutations or more, but this definition is arbitrary, so we 
might have lost candidate oncogenes in some patients. 

In this study, we suggest the concept of clustering samples 
that have diverse mutated genes. AML is very heterogeneous 
genetic disease. Despite the small number of samples we 
have studied, the genetic variation patterns were not com-
mon for all samples. It could have been better to evaluate 
more sample data for analysis by clustering analysis. 
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