
ARTICLE

Genomics & Informatics http://dx.doi.org/10.5808/GI.2012.10.1.44
Vol. 10(1) 44-50, March 2012 pISSN 1598-866X eISSN 2234-0742

*Corresponding author: E-mail hojinc@kaist.ac.kr
Tel +82-42-350-3561, Fax +82-42-350-3510
Received 27 January 2012, Revised 8 February 2012,
Accepted 10 February 2012

Efficient Mining of Interesting Patterns in Large Biological
Sequences

Md. Mamunur Rashid1, Md. Rezaul Karim1,
Byeong-Soo Jeong1 and Ho-Jin Choi2*

1Department of Computer Engineering, College of
Electronics and Information, Kyung Hee University,
Yongin 446-701, Korea, 2Department of Computer
Science, Korea Advanced Institute of Science and
Technology, Daejeon 305-701, Korea

Abstract
Pattern discovery in biological sequences (e.g., DNA se-
quences) is one of the most challenging tasks in com-
putational biology and bioinformatics. So far, in most
approaches, the number of occurrences is a major
measure of determining whether a pattern is interesting
or not. In computational biology, however, a pattern that
is not frequent may still be considered very informative
if its actual support frequency exceeds the prior expect-
ation by a large margin. In this paper, we propose a
new interesting measure that can provide meaningful bi-
ological information. We also propose an efficient in-
dex-based method for mining such interesting patterns.
Experimental results show that our approach can find
interesting patterns within an acceptable computation
time.

Keywords: DNA sequence, index-based method, in-
formation gain, pattern mining

Introduction
Biological sequences, such as DNA sequences, have a
great number of contiguous patterns consisting of fre-
quent items. Which patterns are interesting to biolo-
gists? Is a pattern that occurs more frequently more in-
teresting? So far, in most approaches, the number of
occurrences has been a major measure of determining
an interesting pattern. This measure, however, is not
enough to discriminate a pattern from the background
noise and may induce much time to spend for checking
patterns of no biological meaning. Researchers are more
interested in contiguous patterns that are statistically

significant than those simply occurring frequently. The
aim of mining interesting patterns is to analyze the im-
portant biological functions hidden in the extremely
large amounts of genomic sequences. In this work, we
aimed to discover surprising contiguous patterns that
occur at a frequency higher than their expected fre-
quencies. To find such surprising patterns with con-
fidence, we chose to use a more suitable measure, in-
formation [1], which is widely studied and used in the
field of communication. In information theory, if a pat-
tern is expected to occur frequently based on some pri-
or knowledge or by chance, then an occurrence of that
pattern carries less information. Thus, we can use in-
formation to test the surprise of an occurrence of a
pattern. The information gain is introduced to denote the
accumulated information of a pattern in a DNA se-
quence and is used to exhibit the degree of surprise of
the pattern.
 Many works for sequential pattern mining take an a
priori approach, such as Agrawal and Srikant [2], who
used downward closure property to prune infrequent
patterns, which says that if a pattern is infrequent, all of
its superpatterns must be infrequent. It suffers from the
level-wise difficulty for candidate generation-and-test and
needs several database scans for sequential pattern
mining. A typical Apriori-like approach such as Genera-
lized Sequential Patterns (GSP) [3] is a good example of
this category. An efficient algorithm, PrefixSpan [4], has
been proposed, representing projection-based sequential
pattern mining. This approach examines only the prefix
subsequences and projects only their corresponding
postfix subsequences into the databases. Sequential
patterns are grown by exploring length-1 frequent pat-
terns in each projected database. Using the projected
database, however, every expansion of sequential pat-
terns needs a recursive process, which is not effective
for DNA sequence mining. The problem of finding the
frequent maximal contiguous pattern from sequences
more than two has been introduced in [5-8]. In addition,
Yang et al. [9] have proposed an interesting technique
to find periodic patterns in a sequence of events. Lu et
al. [10] have proposed a pattern discovery algorithm
that can identify over-represented patterns inside DNA
sequences by introducing a new measurement system.
 Another efficient algorithm, MacosVSpan [11], has
been proposed, which gets the maximal subsequence of
each data item by fixed-length spanning and finally
looks for frequent maximal contiguous patterns using a

Pattern Mining in Biological Sequences 45

Table 1. Example of a DNA sequence database

ID Sequence

10 ATCGGTGACTATCG

20 CATCGTTCATCG

30 CATCGTGAAGT

40 TCGTGATTG

50 GCGTGATTC

suffix tree. Although this approach reduces recursive ex-
ecution for expanding sequence patterns, it also suffers
from the problem of producing and using projected
databases. For long data sequences, the projected da-
tabase grows much faster in comparison with the origi-
nal database. Kang et al. [12] have proposed an ap-
proach to improve MacosVSpan using a fixed-length
spanning tree, where each node maintains the frequency
of subsequence overlapping. In this approach, all the
candidates are produced first, including frequent and
nonfrequent patterns; then, each candidate is scanned
through the database to see whether it is frequent or
not. This is obviously very time and memory-consuming.
 Recently, Zerin et al. [13] proposed a position-based
fast method to find contiguous frequent patterns, which
needs to scan the database only once to construct the
fixed length spanning tree. This approach builds the
fixed length spanning tree in the same fashion as Kang
et al. [12] but records the sequence identification (ID)
and starting position of the fixed length pattern with the
frequency in the leaf node of the tree, showing better
results than the previous methods. Rashid et al. [14]
have also proposed an efficient approach to mining sig-
nificant contiguous frequent patterns from DNA se-
quences by constructing the fixed length spanning tree
and by using a threshold that reduces the number of
candidates. In this paper, we further develop this ap-
proach by proposing an index-based method, where the
sequence ID and the staring position of each sequence
are recorded in the leaf node of the tree as a variable
length array. If a fixed-length pattern occurs multiple
times in a sequence, we put the sequence ID as an in-
dex and put the start positions of the fixed length pat-
terns in the variable length array. As a result, this ap-
proach significantly reduces memory space more than
Zerin et al. [13].

Methods

Concepts and definitions

Let ∑ = {A, C, G, T} be a set of DNA alphabets, where
A, C, G, and T are called DNA characters or bases. A
DNA sequence S is an ordered list of DNA alphabets.
S is denoted by <c1, c2, …, cl>, where ci ∈ ∑ and │S│
denotes the length of sequence S. A sequence with
length n is called an n-sequence. A sequence database
D is a set of tuples <sid, S>, where sid is a sequence
ID. The sum of the lengths of all sequences in D is de-
noted as │D│=│S1│+│S2│…│Sn│.
 Definition 1 (Pattern): A pattern is a contiguous
sub-sequence of DNA sequence S drawn from ∑ = {A,
C, G, T}. A sequence α = <a1, a2, …, an> is called a

contiguous sub-sequence of another sequence β = <b1,
b2, …, bm>, and β is a contiguous super-sequence of
α, denoted as α⊆β, if there exists integers 1 ≤ j1
≤ j2 ≤ … ≤ jn ≤ m and ji+1 = ji + 1 for 1 ≤ i ≤
n-1 such that a1 = bj1, a2 = bj2, …, an = bjn. We can
also say that α is contained by β. In our paper, we
use the term “(sub)-sequence” to describe “contiguous
(sub)- sequence” in brief.
 Definition 2 (Support): Given a pattern P and a se-
quence S, the number of occurrences of P in S is called
the support of pattern P in sequence S, denoted as
Sup(P, Si). For DNA sequence database D, the support

of P in D is defined as Sup(P,D) =
 



Sup(P,Si).

 Definition 3 (Confidence): Given a pattern P = P1, P2, …,
Pq and a DNA sequence database D, the confidence of
P1P2 with respect to P1 is defined as Conf(P1P2, P1) =
Sup(P1P2,D)/Sup(P1,D).
 For example, the character “A” occurs 10 times and
“AT” occurs 7 times, and in database D in Table 1,
Conf (AT,A) = 7/10 = 0.7.
 Definition 4 (Pattern probability): Given a pattern P =
P1, P2, …, Pq (Pi is a DNA alphabet) and a DNA sequence
database D, the pattern probability of P in D is defined

as Pr(P, D) =




Pr(Pi,D), where Pr(Pi, D) = # of occurrences

of an alphabet Pi /│D│.
 For example, the pattern probability of pattern
“ATCG” in Table 1 is Pr(ATCG,D) = Pr(A,D) × Pr(T,D) ×
Pr(C,D) × Pr(G,D) = (10/55) × (18/55) × (12/55) ×
(15/55) = 0.182 × 0.372 × 0.218 × 0.273 = 0.00403.
 Definition 5 (Information): The information carried by a
DNA character or base in DNA sequence database D is
defined as I(c) = －log|C|Pr(c,D), where |C| is the number
of distinct characters in D and Pr(c) is the probability of
c occurs in D.
 For example, the occurrence probability of character
A in Table 1 is Pr(A,D) = # of occurence(A)/│D│. So,
the probability of character A is Pr(A,D) = 10/55 = 0.182
in our example database. Then, the information of char-
acter A in D is, I(A) = －log|C|Pr(A,D) = －log4(0.182) =
1.228.

46 Genomics & Informatics Vol. 10(1) 44-50, March 2012

Fig. 1. Fixed length scanning method.

Fig. 2. Surprising con-

tiguous pattern mining

algorithm.

 Definition 6 (Pattern information): Given a pattern P = P1,
P2, …, Pq and a DNA sequence database D, the pattern
information of P in D is defined as I(P) = －log|C|Pr(P,D) =
I(P1) + I(P2) +……+ I(Pq).
 For example, the pattern information of pattern
“ATCG” is I(ATCG,D) = I(A,D) + I(T,D) + I(C,D) + I(G,D)
= 1.228 + 0.713 + 1.098 + 0.9365 = 3.9755 in Table 1.
 Definition 7 (Information gain): Given a pattern P = P1,
P2, …, Pq and a DNA sequence database D, the pattern
information gain of P in D is defined as IG(P) = I(P) ×
Support(P).

 For example, the information gain of pattern “ATCG”
is IG(ATCG,D) = 3.9755 * 5 = 19.8775 in Table 1.
 Definition 8 (Finding interesting patterns): Given a se-
quence database D and user-specified min_conf and
min_in_gain, the problem of finding interesting patterns
is to find the complete set of interesting patterns, such
that IG(P) and Conf(P) are greater than min_in_gain and
min_conf, respectively.

Surprising pattern-mining algorithm

The method for mining surprising contiguous patterns
from a DNA sequence database proceeds as follows.
For constructing the fixed length spanning tree, we fol-
low the method suggested by Kang et al. [12] - that is,
read the database sequences and, starting from the first
of each sequence, move the position one by one of the
fixed length window throughout the sequence (Fig. 1).
We put the sequence ID and the starting position in the
leaf node of the tree as a variable length array, in addi-
tion to the frequency of the pattern moving of the
window.
 Fig. 2 shows our proposed algorithm. It has two

Pattern Mining in Biological Sequences 47

Fig. 3. Index-based fixed-length spanning tree.

Fig. 4. Mining length-4, length-5, length-6, and length-7 surprising patterns.

steps. The first step recursively scans the subsequence
with the same length as the fixed-length window from
the given sequences to construct a fixed-length span-
ning tree and put the database sequence ID and start-
ing position of the pattern in the leaf node of tree as a
one-side open variable length array. At this time, it cal-
culates the character probabilities for A, C, G, and T,
respectively. It is straightforward for the calculation of
character probabilities for A, C, G, and T. By adding all
occurrences of A, C, G, and T and dividing by the total
number of characters in the database, it can be ob-
tained easily. After calculating character probabilities,

we can calculate character information, pattern infor-
mation, and pattern information gain by using definition
5, definition 6, and definition 7.
 The second step generates fixed-length patterns from
the constructed spanning tree with satisfying the mini-
mum information gain threshold and minimum con-
fidence threshold, and expands sequences by joining
candidates and checking the frequency and starting po-
sition of the candidates. At the time of joining the se-
quences with the same length to generate the candi-
dates of the next length, it checks whether the second
candidate starts right to the next position of the first

48 Genomics & Informatics Vol. 10(1) 44-50, March 2012

Fig. 5. Memory usage w.r.t. change of sequence length. Fig. 6. Memory usage w.r.t. change of min_in_gain.

one with the same ID or not. If so, it increases the fre-
quency counter by one. Finally, it checks the minimum
information gain and minimum confidence threshold. If
the pattern satisfies both thresholds, then it is added to
the next-length candidate pattern. This process is re-
cursively followed for all the candidates with the same
length to generate the next-length surprising candidates.
 The spanning tree is shown in Fig. 3, which is con-
structed based on the database available in Table 1. We
have constructed a fixed-length spanning tree using the
method suggested by Zerin et al. [13] but put the se-
quence ID and the staring position in the leaf node of
the tree as a variable length array. Once the tree is con-
structed like Fig. 3, retrieval of the tree can obtain con-
tiguous subsequences with length-4, satisfying the sat-
isfying minimum information gain threshold and mini-
mum confidence threshold. Then, the obtained length-4
surprising contiguous patterns are <ATCG>, <TCGT>,
<TGAT>, <CGTG>, <CGTT>, <CATC>, and <GTGA>,
shown in Fig. 4.
 To generate the length-5 surprising contiguous pat-
terns, we need to join the length-4 surprising patterns;
all the items in the first pattern, excluding the first item,
should be same as all the items of the second pattern,
excluding the last item. The frequency counter of the
next length pattern will increase if both of the patterns
are present in the same sequence and the second pat-
tern’s starting positions are the right next to the posi-
tion of the first pattern in the same sequence. If the
generated patterns satisfy the min_in_gain and min_
conf, we consider the new pattern as a next length sur-
prising candidate. The obtained length-5 surprising pat-
terns are <ATCGT>, <TCGTG>, <TCGTT>, <CGTGA>,
<CATCG>, and <GTGAT>. From Fig. 2, we see pattern
ATCG starts from the 1st and 11th positions of se-
quence 10, 2nd and 9th positions of sequence 20, and
2nd position of sequence 30.
 The pattern TCGT starts from 3rd and 10th positions
of sequence 20, 3rd position of sequence 30, and 1st
position of sequence 40. As a result, the length-5 candi-

date ATCGT starts from the 2nd and 9th positions of
sequence 20 and the 2nd position of sequence 30. So,
the information gain of ATCGT is 14.065, and the con-
fidence of ATCGT with respect to ATCG is 0.6, which
satisfy both min_in_gain and min_conf thresholds.
 Following the same process, the obtained length-6
surprising patterns are <CGTGAT>, <CATCGT>, and
<TCGTGA>, and the obtained length-7 surprising pat-
tern is <TCGTGAT>. Here, we scan the whole database
only once to construct the fixed-length spanning tree
and then never scan the database again. On the other
hand, using an index-based method and min_in_gain
and min_conf thresholds, our proposed approach con-
sumes less memory and faster execution than Zerin et
al. [13].

Results and Discussion
We compare the performance of the proposed approach
with Zerin et al. [13] for searching contiguous sub-
sequences. For this purpose, we use a randomly gen-
erated DNA sequence database and a real DNA se-
quence database. We first generated a DNA sequence
database by means of C++ program that randomly gen-
erates the variable length datasets. This database con-
tains 5,000 DNA sequences with lengths from 100 to
1,000. The real DNA sequence database is downloaded
from the bio-mirror portal (http://www.bio-mirror.net),
which contains 19,979 DNA sequences, with average
sequence length 1,024. All programs are written in
Microsoft Visual C++ 6.0 and run with the Windows XP
operating system on a Pentium dual core 2.13 GHz
CPU with 1 GB main memory.
 In the first experiment, we compare the memory us-
age of our approach and Zerin et al. [13] by varying the
sequence length. Fig. 5 shows the memory usage ac-
cording to the sequence length change, where we used
our generated database for construction of the spanning
tree with a fixed length 7. Here, we used information
gain threshold, min_in_gain = 35(%) and minimum con-

Pattern Mining in Biological Sequences 49

Fig. 7. (A, B) Impact

of pattern length in

mining time.

Fig. 8. (A, B) Impact

of information gain thre-

shold on mining time.

Fig. 9. (A, B) Impact

of confidence threshold

on mining time.

fidence threshold, min_conf = 30(%). From this experi-
ment, we can see that the proposed approach has effi-
cient improvement over Zerin et al. [13]. When the se-
quence length becomes longer, it shows better perform-
ance in comparison with the existing algorithm.
 The memory consumption of our proposed approach
and [13] for different values of min_in_gain over a real
DNA sequence database is shown in Fig. 6. The x-axis
in the graph indicates the change in min_in_gain as a
percentage of the data point. A tree with a fixed
length-10 was constructed using the aforementioned re-
al datasets, and min_conf value 0.35 is taken. Fig. 6 in-
dicates that for increasing the value of min_in_gain for
both approaches, fewer candidates are generated and
less memory is required.

 The second experiment examined mining time per-
formance according to change in sequence length. Fig.
7A shows the mining time of the surprising contiguous
patterns, starting from length-4 to length-9, in a ran-
domly generated DNA sequence database, where we
used information gain threshold min_in_gain = 35% and
min_conf = 30%. On the other hand, we performed the
same experiment with real DNA sequence datasets,
where we used the value of min_in_gain = 45% and
min_conf = 40%, which is shown in Fig. 7B. From Fig.
7, we can see that our proposed approach could mine
the surprising contiguous patterns within a reasonable
computation cost.
 The third experiment shows the effect of information
gain threshold on mining time to find out the surprising

(A) (B)

(A) (B)

(A) (B)

50 Genomics & Informatics Vol. 10(1) 44-50, March 2012

contiguous patterns up to length 8. In this experiment,
we take min_conf 0.3 and 0.4 for the random and real
datasets, respectively. Fig. 8 indicates that increasing
the information gain threshold decreases mining time for
both random and real datasets.
 The fourth experiment studied the impacts of varying
minimum confidence from 0.2 to 0.5 for random data-
sets and 0.25 to 0.55 for real datasets. This time, we
take min_in_gain 0.3 and 0.4 for random and real data-
sets, respectively. Fig. 9 shows our proposed perform-
ance with different values for minimum confidence and
illustrates a non-linear effect. The greatest change along
the confidence axis is from 0.2 to 0.3 for random data-
sets and 0.25 to 0.35 real datasets. In most cases, the
characters are evenly distributed. This means that the A,
C, G, and T occur at almost the same ratio in the data-
set as the frequency of each character, which is ap-
proximately 25%. So, if the min_conf is set to 0.3, most
random patterns will be filtered out, and real patterns
occurring more frequently than 25% of the time will sur-
vive and be extended.
 To summarize, we have developed an index-based
method, where we need to scan the database only once
to mine the surprising contiguous patterns in biological
data sequences, which are considered very important in
bioinformatics and computational biology. Our aim is not
to discover the patterns that occur often but rather to
find patterns that are surprising by introducing a new
threshold information gain. It has been shown by the
experimental results that the proposed approach is very
efficient in finding interesting patterns within a reason-
able computation cost. For future work, we will try to
optimize the proposed approach by considering a varie-
ty of environments with different parameters and also
consider promoting new measurement parameters,
which is very feasible for describing the sequences in a
biological substance.

Acknowledgments

This work was supported by the National Research
Foundation (NRF) grant (No. 2011-0018264) of the
Ministry of Education, Science and Technology (MEST)
of Korea.

References
1. Blahut RE. Principles and Practice of Information

Theory. Reading: Addison-Wesley Pub. Co., 1987.
2. Agrawal R, Srikant R. Fast algorithms for mining asso-

ciation rules. In: Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB’94), 1994

Sep 12-15, Santiago de Chile, pp. 487-499.
3. Srikant R, Agrawal R. Mining sequential patterns: gen-

eralizations and performance improvements. In: Pro-
ceeding of 5th International Conference on Extending
Database Technology (EDBT’96), 1996 Mar 25-29,
Avignon, pp. 3-17.

4. Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal
U, et al. PrefixSpan: mining sequential patterns effi-
ciently by prefix-projected pattern growth. In: Proceed-
ing of IEEE International Conference on Data Engineer-
ing (ICDE’01), 2001 Apr 2-6, Heidelberg, pp. 215-224.

5. Chvátal V, Sankoff D. Longest common subsequences
of two random sequences. J Appl Probab 1995;12:
306-315.

6. Farach M. Optimal suffix tree construction with large
alphabets. In: Proceedings of IEEE Symposium on
Foundations of Computer Science (FOCS’97), 1997 Oct
20-22, Miami Beach, FL, pp. 137-143.

7. Hirschberg DS. Algorithms for the longest common
subsequence problem. J Assoc Comput Mach 1977;24:
664-675.

8. McCreight EM. A space-economical suffix tree con-
struction algorithm. J Assoc Comput Mach 1976;23:
262-272.

9. Yang J, Wang W, Yu PS. InfoMiner: Mining Surprising
Periodic patterns. In: Proceeding of the 7th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD’01), 2001 Aug 26-29,
San Francisco, CA.

10. Lu Y, Lu S, Fotouhi F, Sun Y, Yang Z, Liang LR. PDC:
pattern discovery with confidence in DNA sequences.
In: Proceeding of the 2nd IASTED International Confer-
ence on Advances in Computer Science and Technol-
ogy (ACST’06), 2006 Jan 23-25, Puerto Vallarta, pp.
345-350.

11. Pan J, Wang P, Wang W, Shi B, Yang G. Efficient al-
gorithms for mining maximal frequent concatenate se-
quences in biological datasets. In: Proceeding of 5th
International Conference on Computer and Information
Technology (CIT’05), 2005 Sep 21-23, Shanghai, pp.
98-104.

12. Kang TH, Yoo JS, Kim HY. Mining frequent contiguous
sequence patterns in biological sequences. In: Procee-
dings of 7th IEEE International Conference on Bioinfor-
matics and Bioengineering (BIBE’08), 2008 Oct 8-10,
Athens, pp. 723-728.

13. Zerin SF, Ahmed CF, Tanbeer SK, Jeong BS. A fast in-
dexed-based contiguous sequential pattern mining tech-
nique in biological data sequences. In: Proceeding of
2nd International Conference on Emerging Databases
(EBD’10), 2010 Aug 30-31, Jeju.

14. Rashid MM, Karim MR, Hossain MA, Jeong BS. An ef-
ficient approach for mining significant contiguous fre-
quent patterns in biological sequences. In: Proceeding
of 3rd International Conference on Emerging Databases
(EBD’11), 2011 Aug 25-27, Incheon.

