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Abstract
Pattern discovery in biological sequences (e.g., DNA se-
quences) is one of the most challenging tasks in com-
putational biology and bioinformatics. So far, in most 
approaches, the number of occurrences is a major 
measure of determining whether a pattern is interesting 
or not. In computational biology, however, a pattern that 
is not frequent may still be considered very informative 
if its actual support frequency exceeds the prior expect-
ation by a large margin. In this paper, we propose a 
new interesting measure that can provide meaningful bi-
ological information. We also propose an efficient in-
dex-based method for mining such interesting patterns. 
Experimental results show that our approach can find 
interesting patterns within an acceptable computation 
time.
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Introduction
Biological sequences, such as DNA sequences, have a 
great number of contiguous patterns consisting of fre-
quent items. Which patterns are interesting to biolo-
gists? Is a pattern that occurs more frequently more in-
teresting? So far, in most approaches, the number of 
occurrences has been a major measure of determining 
an interesting pattern. This measure, however, is not 
enough to discriminate a pattern from the background 
noise and may induce much time to spend for checking 
patterns of no biological meaning. Researchers are more 
interested in contiguous patterns that are statistically 

significant than those simply occurring frequently. The 
aim of mining interesting patterns is to analyze the im-
portant biological functions hidden in the extremely 
large amounts of genomic sequences. In this work, we 
aimed to discover surprising contiguous patterns that 
occur at a frequency higher than their expected fre-
quencies. To find such surprising patterns with con-
fidence, we chose to use a more suitable measure, in-
formation [1], which is widely studied and used in the 
field of communication. In information theory, if a pat-
tern is expected to occur frequently based on some pri-
or knowledge or by chance, then an occurrence of that 
pattern carries less information. Thus, we can use in-
formation to test the surprise of an occurrence of a 
pattern. The information gain is introduced to denote the 
accumulated information of a pattern in a DNA se-
quence and is used to exhibit the degree of surprise of 
the pattern.
  Many works for sequential pattern mining take an a 
priori approach, such as Agrawal and Srikant [2], who 
used downward closure property to prune infrequent 
patterns, which says that if a pattern is infrequent, all of 
its superpatterns must be infrequent. It suffers from the 
level-wise difficulty for candidate generation-and-test and 
needs several database scans for sequential pattern 
mining. A typical Apriori-like approach such as Genera-
lized Sequential Patterns (GSP) [3] is a good example of 
this category. An efficient algorithm, PrefixSpan [4], has 
been proposed, representing projection-based sequential 
pattern mining. This approach examines only the prefix 
subsequences and projects only their corresponding 
postfix subsequences into the databases. Sequential 
patterns are grown by exploring  length-1 frequent pat-
terns in each projected database. Using the projected 
database, however, every expansion of sequential pat-
terns needs a recursive process, which is not effective 
for DNA sequence mining. The problem of finding the 
frequent maximal contiguous pattern from sequences 
more than two has been introduced in [5-8]. In addition, 
Yang et al. [9] have proposed an interesting technique 
to find periodic patterns in a sequence of events. Lu et 
al. [10] have proposed a pattern discovery algorithm 
that can identify over-represented patterns inside DNA 
sequences by introducing a new measurement system.
  Another efficient algorithm, MacosVSpan [11], has 
been proposed, which gets the maximal subsequence of 
each data item by fixed-length spanning and finally 
looks for frequent maximal contiguous patterns using a 
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Table 1. Example of a DNA sequence database

ID Sequence

10 ATCGGTGACTATCG

20 CATCGTTCATCG

30 CATCGTGAAGT

40 TCGTGATTG

50 GCGTGATTC

suffix tree. Although this approach reduces recursive ex-
ecution for expanding sequence patterns, it also suffers 
from the problem of producing and using projected 
databases. For long data sequences, the projected da-
tabase grows much faster in comparison with the origi-
nal database. Kang et al. [12] have proposed an ap-
proach to improve MacosVSpan using a fixed-length 
spanning tree, where each node maintains the frequency 
of subsequence overlapping. In this approach, all the 
candidates are produced first, including frequent and 
nonfrequent patterns; then, each candidate is scanned 
through the database to see whether it is frequent or 
not. This is obviously very time and memory-consuming.
  Recently, Zerin et al. [13] proposed a position-based 
fast method to find contiguous frequent patterns, which 
needs to scan the database only once to construct the 
fixed length spanning tree. This approach builds the 
fixed length spanning tree in the same fashion as Kang 
et al. [12] but records the sequence identification (ID) 
and starting position of the fixed length pattern with the 
frequency in the leaf node of the tree, showing better 
results than the previous methods. Rashid et al. [14] 
have also proposed an efficient approach to mining sig-
nificant contiguous frequent patterns from DNA se-
quences by constructing the fixed length spanning tree 
and by using a threshold that reduces the number of 
candidates. In this paper, we further develop this ap-
proach by proposing an index-based method, where the 
sequence ID and the staring position of each sequence 
are recorded in the leaf node of the tree as a variable 
length array. If a fixed-length pattern occurs multiple 
times in a sequence, we put the sequence ID as an in-
dex and put the start positions of the fixed length pat-
terns in the variable length array. As a result, this ap-
proach significantly reduces memory space more than 
Zerin et al. [13].

Methods

Concepts and definitions

Let ∑ = {A, C, G, T} be a set of DNA alphabets, where 
A, C, G, and T are called DNA characters or bases. A 
DNA sequence S is an ordered list of DNA alphabets. 
S is denoted by <c1, c2, …, cl>, where ci ∈ ∑ and │S│ 
denotes the length of sequence S. A sequence with 
length n is called an n-sequence. A sequence database 
D is a set of tuples <sid, S>, where sid is a sequence 
ID. The sum of the lengths of all sequences in D is de-
noted as │D│=│S1│+│S2│…│Sn│.
  Definition 1 (Pattern): A pattern is a contiguous 
sub-sequence of DNA sequence S drawn from ∑ = {A, 
C, G, T}. A sequence α = <a1, a2, …, an> is called a 

contiguous sub-sequence of another sequence β = <b1, 
b2, …, bm>, and β is a contiguous super-sequence of 
α, denoted as α⊆β, if there exists integers 1 ≤ j1  
≤ j2 ≤ … ≤ jn ≤ m and ji+1 = ji + 1 for 1 ≤ i ≤ 
n-1 such that a1 = bj1, a2 = bj2, …, an = bjn. We can 
also say that α is contained by β. In our paper, we 
use the term “(sub)-sequence” to describe “contiguous 
(sub)- sequence” in brief.
  Definition 2 (Support): Given a pattern P and a se-
quence S, the number of occurrences of P in S is called 
the support of pattern P in sequence S, denoted as 
Sup(P, Si). For DNA sequence database D, the support 

of P in D is defined as Sup(P,D) =
 



Sup(P,Si).

  Definition 3 (Confidence): Given a pattern P = P1, P2, …, 
Pq and a DNA sequence database D, the confidence of 
P1P2 with respect to P1 is defined as Conf(P1P2, P1) = 
Sup(P1P2,D)/Sup(P1,D).
  For example, the character “A” occurs 10 times and 
“AT” occurs 7 times, and in database D in Table 1, 
Conf (AT,A) = 7/10 = 0.7.
  Definition 4 (Pattern probability): Given a pattern P = 
P1, P2, …, Pq (Pi is a DNA alphabet) and a DNA sequence 
database D, the pattern probability of P in D is defined 

as Pr(P, D) =




Pr(Pi,D), where Pr(Pi, D) = # of occurrences

of an alphabet Pi /│D│.
  For example, the pattern probability of pattern 
“ATCG” in Table 1 is Pr(ATCG,D) = Pr(A,D) × Pr(T,D) × 
Pr(C,D) × Pr(G,D) = (10/55) × (18/55) × (12/55) × 
(15/55) = 0.182 × 0.372 × 0.218 × 0.273 = 0.00403.
  Definition 5 (Information): The information carried by a 
DNA character or base in DNA sequence database D is 
defined as I(c) = －log|C|Pr(c,D), where |C| is the number 
of distinct characters in D and Pr(c) is the probability of 
c occurs in D.
  For example, the occurrence probability of character 
A in Table 1 is Pr(A,D) = # of occurence(A)/│D│. So, 
the probability of character A is Pr(A,D) = 10/55 = 0.182 
in our example database. Then, the information of char-
acter A in D is, I(A) = －log|C|Pr(A,D) = －log4(0.182) = 
1.228.



46 Genomics & Informatics Vol. 10(1) 44-50, March 2012

Fig. 1. Fixed length scanning method.

Fig. 2. Surprising con-

tiguous pattern mining 

algorithm.

  Definition 6 (Pattern information): Given a pattern P = P1, 
P2, …, Pq  and a DNA sequence database D, the pattern 
information of P in D is defined as I(P) = －log|C|Pr(P,D) = 
I(P1) + I(P2) +……+ I(Pq).
  For example, the pattern information of pattern 
“ATCG” is I(ATCG,D) = I(A,D) + I(T,D) + I(C,D) + I(G,D) 
= 1.228 + 0.713 + 1.098 + 0.9365 = 3.9755 in Table 1.
  Definition 7 (Information gain): Given a pattern P = P1, 
P2, …, Pq and a DNA sequence database D, the pattern 
information gain of P in D is defined as  IG(P) = I(P) × 
Support(P).

  For example, the information gain of pattern “ATCG” 
is IG(ATCG,D) = 3.9755 * 5 = 19.8775 in Table 1. 
  Definition 8 (Finding interesting patterns): Given a se-
quence database D and user-specified min_conf and 
min_in_gain, the problem of finding interesting patterns 
is to find the complete set of interesting patterns, such 
that IG(P) and Conf(P) are greater than min_in_gain and 
min_conf, respectively.

Surprising pattern-mining algorithm

The method for mining surprising contiguous patterns 
from a DNA sequence database proceeds as follows. 
For constructing the fixed length spanning tree, we fol-
low the method suggested by Kang et al. [12] - that is, 
read the database sequences and, starting from the first 
of each sequence, move the position one by one of the 
fixed length window throughout the sequence (Fig. 1). 
We put the sequence ID and the starting position in the 
leaf node of the tree as a variable length array, in addi-
tion to the frequency of the pattern moving of the 
window.
  Fig. 2 shows our proposed algorithm. It has two 
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Fig. 3. Index-based fixed-length spanning tree.

Fig. 4. Mining length-4, length-5, length-6, and length-7 surprising patterns.

steps. The first step recursively scans the subsequence 
with the same length as the fixed-length window from 
the given sequences to construct a fixed-length span-
ning tree and put the database sequence ID and start-
ing position of the pattern in the leaf node of tree as a 
one-side open variable length array. At this time, it cal-
culates the character probabilities for A, C, G, and T, 
respectively. It is straightforward for the calculation of 
character probabilities for A, C, G, and T. By adding all 
occurrences of A, C, G, and T and dividing by the total 
number of characters in the database, it can be ob-
tained easily. After calculating character probabilities, 

we can calculate character information, pattern infor-
mation, and pattern information gain by using definition 
5, definition 6, and definition 7.
  The second step generates fixed-length patterns from 
the constructed spanning tree with satisfying the mini-
mum information gain threshold and minimum con-
fidence threshold, and expands sequences by joining 
candidates and checking the frequency and starting po-
sition of the candidates. At the time of joining the se-
quences with the same length to generate the candi-
dates of the next length, it checks whether the second 
candidate starts right to the next position of the first 
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Fig. 5. Memory usage w.r.t. change of sequence length. Fig. 6. Memory usage w.r.t. change of min_in_gain.

one with the same ID or not. If so, it increases the fre-
quency counter by one. Finally, it checks the minimum 
information gain and minimum confidence threshold. If 
the pattern satisfies both thresholds, then it is added to 
the next-length candidate pattern. This process is re-
cursively followed for all the candidates with the same 
length to generate the next-length surprising candidates.
  The spanning tree is shown in Fig. 3, which is con-
structed based on the database available in Table 1. We 
have constructed a fixed-length spanning tree using the 
method suggested by Zerin et al. [13] but put the se-
quence ID and the staring position in the leaf node of 
the tree as a variable length array. Once the tree is con-
structed like Fig. 3, retrieval of the tree can obtain con-
tiguous subsequences with length-4, satisfying the sat-
isfying minimum information gain threshold and mini-
mum confidence threshold. Then, the obtained length-4 
surprising contiguous patterns are <ATCG>, <TCGT>, 
<TGAT>, <CGTG>, <CGTT>, <CATC>, and <GTGA>, 
shown in Fig. 4.
  To generate the length-5 surprising contiguous pat-
terns, we need to join the length-4 surprising patterns; 
all the items in the first pattern, excluding the first item, 
should be same as all the items of the second pattern, 
excluding the last item. The frequency counter of the 
next length pattern will increase if both of the patterns 
are present in the same sequence and the second pat-
tern’s starting positions are the right next to the posi-
tion of the first pattern in the same sequence. If the 
generated patterns satisfy the min_in_gain and min_ 
conf, we consider the new pattern as a next length sur-
prising candidate. The obtained length-5 surprising pat-
terns are <ATCGT>, <TCGTG>, <TCGTT>, <CGTGA>, 
<CATCG>, and <GTGAT>. From Fig. 2, we see pattern 
ATCG starts from the 1st and 11th positions of se-
quence 10, 2nd and 9th positions of sequence 20, and 
2nd position of sequence 30.
  The pattern TCGT starts from 3rd and 10th positions 
of sequence 20, 3rd position of sequence 30, and 1st 
position of sequence 40. As a result, the length-5 candi-

date ATCGT starts from the 2nd and 9th positions of 
sequence 20 and the 2nd position of sequence 30. So, 
the information gain of ATCGT is 14.065, and the con-
fidence of ATCGT with respect to ATCG is 0.6, which 
satisfy both min_in_gain and min_conf thresholds.
  Following the same process, the obtained length-6 
surprising patterns are <CGTGAT>, <CATCGT>, and 
<TCGTGA>, and the obtained length-7 surprising pat-
tern is <TCGTGAT>. Here, we scan the whole database 
only once to construct the fixed-length spanning tree 
and then never scan the database again. On the other 
hand, using an index-based method and min_in_gain 
and min_conf thresholds, our proposed approach con-
sumes less memory and faster execution than Zerin et 
al. [13].

Results and Discussion
We compare the performance of the proposed approach 
with Zerin et al. [13] for searching contiguous sub-
sequences. For this purpose, we use a randomly gen-
erated DNA sequence database and a real DNA se-
quence database. We first generated a DNA sequence 
database by means of C++ program that randomly gen-
erates the variable length datasets. This database con-
tains 5,000 DNA sequences with lengths from 100 to 
1,000. The real DNA sequence database is downloaded 
from the bio-mirror portal (http://www.bio-mirror.net), 
which contains 19,979 DNA sequences, with average 
sequence length 1,024. All programs are written in 
Microsoft Visual C++ 6.0 and run with the Windows XP 
operating system on a Pentium dual core 2.13 GHz 
CPU with 1 GB main memory.
  In the first experiment, we compare the memory us-
age of our approach and Zerin et al. [13] by varying the 
sequence length. Fig. 5 shows the memory usage ac-
cording to the sequence length change, where we used 
our generated database for construction of the spanning 
tree with a fixed length 7. Here, we used information 
gain threshold, min_in_gain = 35(%) and minimum con-
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Fig. 7. (A, B) Impact 

of pattern length in 

mining time.

Fig. 8. (A, B) Impact 

of information gain thre-

shold on mining time.

Fig. 9. (A, B) Impact 

of confidence threshold 

on mining time.

fidence threshold, min_conf = 30(%). From this experi-
ment, we can see that the proposed approach has effi-
cient improvement over Zerin et al. [13]. When the se-
quence length becomes longer, it shows better perform-
ance in comparison with the existing algorithm.
  The memory consumption of our proposed approach 
and [13] for different values of min_in_gain over a real 
DNA sequence database is shown in Fig. 6. The x-axis 
in the graph indicates the change in min_in_gain as a 
percentage of the data point. A tree with a fixed 
length-10 was constructed using the aforementioned re-
al datasets, and min_conf value 0.35 is taken. Fig. 6 in-
dicates that for increasing the value of min_in_gain for 
both approaches, fewer candidates are generated and 
less memory is required.

  The second experiment examined mining time per-
formance according to change in sequence length. Fig. 
7A shows the mining time of the surprising contiguous 
patterns, starting from length-4 to length-9, in a ran-
domly generated DNA sequence database, where we 
used information gain threshold min_in_gain = 35% and 
min_conf = 30%. On the other hand, we performed the 
same experiment with real DNA sequence datasets, 
where we used the value of min_in_gain = 45% and 
min_conf = 40%, which is shown in Fig. 7B. From Fig. 
7, we can see that our proposed approach could mine 
the surprising contiguous patterns within a reasonable 
computation cost. 
  The third experiment shows the effect of information 
gain threshold on mining time to find out the surprising 

(A) (B)

(A) (B)

(A) (B)
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contiguous patterns up to length 8. In this experiment, 
we take min_conf 0.3 and 0.4 for the random and real 
datasets, respectively. Fig. 8 indicates that increasing 
the information gain threshold decreases mining time for 
both random and real datasets.
  The fourth experiment studied the impacts of varying 
minimum confidence from 0.2 to 0.5 for random data-
sets and 0.25 to 0.55 for real datasets. This time, we 
take min_in_gain 0.3 and 0.4 for random and real data-
sets, respectively. Fig. 9 shows our proposed perform-
ance with different values for minimum confidence and 
illustrates a non-linear effect. The greatest change along 
the confidence axis is from 0.2 to 0.3 for random data-
sets and 0.25 to 0.35 real datasets. In most cases, the 
characters are evenly distributed. This means that the A, 
C, G, and T occur at almost the same ratio in the data-
set as the frequency of each character, which is ap-
proximately 25%. So, if the min_conf is set to 0.3, most 
random patterns will be filtered out, and real patterns 
occurring more frequently than 25% of the time will sur-
vive and be extended.
  To summarize, we have developed an index-based 
method, where we need to scan the database only once 
to mine the surprising contiguous patterns in biological 
data sequences, which are considered very important in 
bioinformatics and computational biology. Our aim is not 
to discover the patterns that occur often but rather to 
find patterns that are surprising by introducing a new 
threshold information gain. It has been shown by the 
experimental results that the proposed approach is very 
efficient in finding interesting patterns within a reason-
able computation cost. For future work, we will try to 
optimize the proposed approach by considering a varie-
ty of environments with different parameters and also 
consider promoting new measurement parameters, 
which is very feasible for describing the sequences in a 
biological substance.
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