
G&I Genomics & Informatics

pISSN 1598-866X eISSN 2234-0742
Genomics Inform 2012;10(4):266-270

http://dx.doi.org/10.5808/GI.2012.10.4.266

APPLICATION NOTE

Received November 1, 2012; Revised November 14, 2012; Accepted November 16, 2012

*Corresponding author: Tel: +82-2-3277-2831, Fax: +82-2-3277-2306, E-mail: neo@ewha.ac.kr

Copyright © 2012 by the Korea Genome Organization
CC It is identical to the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/).

Developing JSequitur to Study the Hierarchical
Structure of Biological Sequences in a Grammatical

Inference Framework of String Compression
Algorithms

Bulgan Galbadrakh, Kyung-Eun Lee, Hyun-Seok Park*

Department of Computer Science, Ewha Womans University, Seoul 120-750, Korea

Grammatical inference methods are expected to find grammatical structures hidden in biological sequences. One hopes that
studies of grammar serve as an appropriate tool for theory formation. Thus, we have developed JSequitur for automatically
generating the grammatical structure of biological sequences in an inference framework of string compression algorithms.
Our original motivation was to find any grammatical traits of several cancer genes that can be detected by string
compression algorithms. Through this research, we could not find any meaningful unique traits of the cancer genes yet, but
we could observe some interesting traits in regards to the relationship among gene length, similarity of sequences, the
patterns of the generated grammar, and compression rate.

Keywords: context-free grammar, formal language theory, natural language processing, stochastic modeling

Availability: JSequitur is freely available for academic purposes. Please contact neo@ewha.ac.kr.

Introduction

In formal language theory a language is simply a set of
strings of characters drawn from some alphabet, where the
alphabet (terminal) is a set of symbols. When we consider
biological sequences simply as a language in the context of
formal language theory (treating DNA, RNA, or protein
sequences just as strings of alphabets of four nucleotides or
20 amino acids), a grammatical inference method based on
formal language theory can be applied [1-3].

Nevill-Manning and Witten [4] pioneered the attempt to
produce the context-free grammarof biological sequences in
an automatic way. This task can be formalized as the problem
of finding the smallest context-free grammar by recursively
replacing the repeats by a new symbol. The algorithm builds
a hierarchy of phrases by forming a new rule out of existing
pairs of symbols, including non-terminal symbols.

For example, if we consider the string “atattattatt,” the
simplest way to represent the string by context-free gram-

mar is the following:
<Grammar 0>
S → atattattatt
The most frequently occurring sequence in the string is

“at,” which occurs four times. Thus, introducing a new
nonterminal symbol, ‘A,’ and creating a new rule for this
yields the following modified grammar:

<Grammar 1>
S → AAtAtAt
A → at,
where the grammar consists of a start symbol (i.e., S), two

terminal symbols (i.e., a, t) represented by lowercase letters,
two non-terminal symbols (i.e., S, A) represented by
uppercase letters, and two production rules (i.e., S →

AAtAtAt, A → at) with a left- and a right-hand side con-
sisting of a sequence of these symbols.

Repeatedly replacing the frequently occurring patterns
“At,” again to a new nonterminal symbol, B, gives the
following modified grammar:

www.genominfo.org 267

Genomics & Informatics Vol. 10, No. 4, 2012

Fig. 1. User interface of JSequitur program.

Fig. 2. JSequitur class diagram.

<Grammar 2>
S → ABBB
A → at
B→ At,
where the grammar consists of a start symbol (i.e., S), two

terminal symbols (i.e., a, t), three non-terminal symbols
(i.e., S, A, B), and three production rules (i.e., S → ABBB, A
→ at, B → At).

By applying the three production rules by replacing an
occurrence of the nonterminals on the left-hand side of the
production rule with those that appear on the right-hand
side, the string “atattattatt” can be derived from the
non-terminal S by constantly applying a series of derivations:
S → ABBB → atBBB → atAtBB → atattBB → atattAtB →

atattattB → atattattAt → atattattatt.
Based on this concept, grammar-based compression algo-

rithms have shown some success for various applications
[4-7]. Especially, grammar can capture distant repetitions
occurring far apart, which was a limitation of sliding window
approaches. However, grammar-based compression algori-
thms at this moment do not show the best performance for
compression itself [6]. Thus, our motivation of this study is
not to develop a new algorithm or find the most efficient way
to compress biological sequences for storage purposes. Our
sole purpose of developing a new tool is to investigate any
grammatical traits of biological sequences, based on formal
language theory.

Implementation

We have developed a slightly modified version of Se-
quitur [4] called JSequitur for automatically creating hie-
rarchical structures of sequences [8], as in Fig. 1. Our main
contribution is to improve Sequitur to work better in a
graphic user interface (GUI) environment, as our main in-
terest was in studying the generated grammar, rather than
enhancing the compression rate itself. JSequitur is im-
plemented in Java and organized into six classes, as in Fig. 2:
Sequitur, Symbol, Guard, Terminal, Nonterminal, and Rule.
Sequitur class is called first and connects with all of the other
classes. Symbol class is the connecter class, which streams
sequences of input to the system. Rule class accesses
Terminal and NonTerminal classes in order to create rules.
Guard class, which is based on digram uniqueness, is
responsible for rule confirmation.

Thus, our string compression algorithm operates by

268 www.genominfo.org

B Galbadrakh, et al. Developing JSequitur to Study the Structure of Biological Sequences

No. Gene Length Compressed
length

No. of
rules

Compression
ratio

 1 TERC 587 157 45 0.2675
 2 MIF 1,099 265 79 0.2411
 3 HSPB1 2,262 528 131 0.2334
 4 TNFRSF6B 2,662 571 153 0.2145
 5 S100A4 2,844 630 163 0.2215
 6 CDKN2D 3,274 713 173 0.2178
 7 GSTP1 3,977 847 200 0.2130
 8 HRAS 4,301 869 206 0.2020
 9 EMS1 4,741 978 235 0.2063
10 TCL1A 5,498 1,142 264 0.2077
11 TFF1 5,530 1,110 274 0.2007
12 TCTA 5,553 1,104 279 0.1988
13 MUC1 5,729 1,034 268 0.1805
14 SNCG 6,148 1,221 271 0.1986
15 IL6 6,312 1,283 287 0.2033
16 CDKN1B 6,504 1,293 301 0.1988
17 MYC 6,976 1,409 300 0.2020
18 KLK3 7,604 1,487 329 0.1956
19 GSTM1 7,734 1,525 325 0.1972
20 CYP1A1 7,793 1,527 352 0.1959
22 KISS1 7,997 1,526 342 0.1908
23 ARHC 8,159 1,587 349 0.1945
24 PLAU 8,318 1,624 346 0.1952
25 MYCN 8,381 1,655 350 0.1975
26 MYCL1 8,570 1,688 359 0.1970
27 HSPCB 8,796 1,685 380 0.1916
28 CYP2A6 8,982 1,701 395 0.1894
29 BAX 9,021 1,667 383 0.1848
30 CYP17 9,103 1,735 393 0.1906
31 GSTT1 10,590 1,941 439 0.1833
32 ING1 10,841 2,069 438 0.1909
33 CYP1B1 11,152 2,128 443 0.1908
34 NAT2 12,959 2,406 484 0.1857
35 TFAP2C 12,976 2,458 510 0.1894
36 FGF8 13,312 2,437 507 0.1831
37 CDKN1A 14,144 2,645 524 0.1870
38 RASSF1 14,497 2,621 533 0.1808
39 CTSD 14,613 2,558 532 0.1751
40 BIRC5 14,872 2,536 571 0.1705
41 MMP11 14,908 2,695 555 0.1808
42 PCNA 15,170 2,726 572 0.1797
43 CYP2E 15,280 2,750 582 0.1800
44 RCA1 15,646 2,660 611 0.1700
45 BAG1 15,979 2,967 572 0.1857
46 CCNE1 16,009 2,902 589 0.1813
47 CCND1 17,380 3,132 597 0.1802
48 BCL1 17,380 3,132 597 0.1802
49 TAL1 17,525 3,154 629 0.1800
50 NAT1 18,081 3,236 634 0.1790
51 CEACAM8 19,094 3,348 662 0.1753
52 LIBC 20,296 3,603 711 0.1775
53 VEGF 21,163 3,702 720 0.1749
54 MPL 21,659 3,807 723 0.1758
55 SLC2A3 22,189 3,853 748 0.1736

Table 1. One hundred four genes and their compression rates

No. Gene Length Compressed
length

No. of
rules

Compression
ratio

 56 STIP1 23,964 4,022 825 0.1678
 57 TP53 24,886 3,972 860 0.1596
 58 IGF2 26,633 4,512 881 0.1694
 59 CSK 27,449 4,662 875 0.1698
 60 STK11 29,427 4,792 932 0.1628
 61 TFAP2A 29,746 5,180 923 0.1741
 62 ERBB3 30,527 5,021 961 0.1645
 63 MSH6 31,034 5,038 973 0.1623
 64 MLLT6 31,438 5,346 974 0.1700
 65 BCL6 31,653 5,426 971 0.1714
 66 SLC22A1L 33,184 5,440 1,010 0.1639
 67 PSEN2 33,192 5,660 978 0.1705
 68 CDKN2A 34,762 5,940 987 0.1709
 69 TPMT 34,883 5,702 1,053 0.1635
 70 POU2AF1 35,332 5,809 1087 0.1644
 71 MMP2 35,758 6,058 1,074 0.1694
 72 PI5 36,627 6,098 1,079 0.1665
 73 COMT 36,706 5,860 1,131 0.1596
 74 TFAP2B 37,554 6,392 1,123 0.1702
 75 NOTCH4 37,993 6,191 1,123 0.1630
 76 TOP2A 38,258 6,027 1,159 0.1575
 77 MKI67 38,410 6,258 1,152 0.1629
 78 SLC2A1 43,942 7,254 1,178 0.1651
 79 MDM2 48,414 7,466 1,409 0.1542
 80 CD9 49,342 7,937 1,400 0.1609
 82 THBS2 49,741 7,801 1,377 0.1568
 83 BCAR1 50,730 8,015 1,397 0.1580
 84 PPP2R1B 51,400 8,203 1,452 0.1596
 85 SH3GL1 52,262 8,222 1,465 0.1573
 86 ERBB2 52,679 8,151 1,504 0.1547
 87 TERT 54,445 7,781 1,531 0.1429
 88 PDGFRB 54,627 8,684 1,533 0.1590
 89 AXL 55,332 8,369 1,608 0.1513
 90 GAS6 56,583 8,476 1,551 0.1498
 91 EFNB2 58,902 9,472 1,538 0.1608
 92 KRAS2 59,377 9,280 1,623 0.1563
 93 TSG101 60,640 9,516 1,640 0.1569
 94 EIF3S6 61,084 9,600 1,574 0.1572
 95 WT1 62,089 9,980 1,718 0.1607
 96 RARA 63,015 9,783 1,681 0.1552
 97 TNFRSF10B 63,771 9,896 1,720 0.1552
 98 NOTCH1 66,745 8,476 1,551 0.1270
 99 LASP1 67,486 10,220 1,816 0.1514
100 EIF4E 67,834 10,262 1,814 0.1513
101 ARHA 68,833 9,651 1,917 0.1402
102 PML 69,091 10,636 1,826 0.1539
103 CHEK2 70,320 10,317 1,921 0.1467
104 COT 70,410 10,930 1,797 0.1552

Table 1. Continued

reading in a new symbol and processing it by appending it to
the top-level string and then examining the last symbols of
that string; it then applies zero or more of the following
transformations until none applies anywhere in the grammar;

www.genominfo.org 269

Genomics & Informatics Vol. 10, No. 4, 2012

Fig. 3. Compression rates
in relation to gene length.

it then repeats the cycle by reading in a new symbol.
The following production rules, which have been created

automatically, are an exemplary output of applying JSequitur
to the partial sequence of the TERT gene (175 bp,
“gcccccgggtgtccctgtcacgtgcagggtgagtgaggcgcggtccccgggtgtc
cctgtcacgtgcagggtgagtgaggcgcggtccccgggtgtccctgtcacgtgcag
ggtgagtgaggcgcggtcccc”):

R0 → g R1 R2 R3 R4 R5 R6 R7 R6 R8 R5 R9 R1 R3 R4 R10
R11 g a R4 a R12 R13 R14 R7 R15 R8 R16 R10 R14 c

R1 → c c
R2 → R1 c
R3 → R11 R17 R2 R18
R4 → R17 g
R5 → R16 R13 R19
R6 → t R2
R7 → R19 R4
R8 → R18 R4
R9 → t R1
R10 → a a
R11 → R12 R17
R12 → g g
R13 → c g
R14 → R19 R15
R15 → R9 c
R16 → R10 R11 g a R4 a R12
R17 → g t
R18 → t R17 R10 c
R19 → R13 g,
where the grammar consists of a start symbol (i.e., R0),

four terminal symbols (i.e., a, t, g, c), 20 non-terminal
symbols (i.e., R0-R19), and 20 production rules for each
nonterminal. In summary, the partial sequence of 175 bp of
the TERT gene could be compressed to 37 symbols with 20
rules.

For testing purposes, 104 cancerous genes from 6 cancer

types (bladder, breast, endometrial, leukemia, lung, and
melanoma) were initially chosen, and JSequitur was applied.
Table 1 shows the result of applying one of the string
compression algorithms of JSequitur to these genes.

The rule column in Table 1 shows the number of generated
rules from the context-free grammar, while the ratio column
shows the ratios of the compressed sequences vs. the
original sequences.

Fig. 3 is a sorted diagram in the order of the length of the
original sequence. In this specific case, it shows that the
length of the original sequence influences the compression
rate of the target sequence, even though there are many
other factors that influence compression rate. For example,
compression rate can also be influenced by the algorithm
itself, depending on whether we replace the longest pattern
first or the most frequently occurring pattern first.

We also compared some mouse genes to find any ho-
mologous traits in regards to compression rate and hie-
rarchical structure of the grammar. For example, we
compared human MUC1 (Homo sapiens, 5,279 bp) with
mouse MUC1 (Mus musculus, 5,614 bp), and the com-
pression rates for these two sequences were 0.180 and 0.195,
respectively. For the ARHA genes, the compression rate for
human ARHA (68,833 bp) was 0.140, whereas that for
mouse ARHA (41,255 bp) was 0.157. Thus, the distance on
the evolutionary tree can be measured by compression
algorithms, to a certain extent.

Conclusion and Future Direction

We have developed a GUI-based JSequitur, based on string
compression algorithms, to examine grammatical traits of
biological sequences. On top of compression capacity, a
string compression algorithm is appealing for studying
biological sequences, because it can give insights into the

270 www.genominfo.org

B Galbadrakh, et al. Developing JSequitur to Study the Structure of Biological Sequences

structure of these sequences. Precisely constructed models
for linguistic structure can play a vital role in the process of
discovery itself.

We also applied JSequitur to analyze 104 cancer genes for
testing purposes only. Even though there are some
interesting results in regards to the relationship among gene
length, similarity of sequences, the patterns of the generated
grammar, and compression rate, our test samples were too
small to conclude anything. Thus, our result should be
regarded as preliminary for future research. We should
consider various factors other than grammatical structures
and compression rates.

As our main purpose of developing the tool was to exa-
mine any grammatical traits of biological sequences, the
graphical user interface was important for a semiautomatic
screening process. However, we still need to implement
various features to compare gene structures to summarize
statistics in regards to grammatical structures and to
combine evolutionary trees. Hopefully, these features will be
implemented in the next version of JSequitur. We also hope
to enhance the algorithm more elaborately to handle
reversal, translocation, and shuffling.

References

1. Sakakibara Y. Grammatical inference in bioinformatics. IEEE

Trans Pattern Anal Mach Intell 2005;27:1051-1062.
2. Coste F. Modelling biological sequences by grammatical

inference. In: ICGI 2010 Tutorial Day. Valencia: International
Conference on Grammatical Inference, 2010. Accessed 2012
Nov 1. Available from: http://www.irisa.fr/symbiose/peo-
ple/fcoste/pub/biblio_tutoICGI2010_coste.pdf.

3. Park HS, Galbadrakh B, Kim YM. Recent progresses in the lin-
guistic modeling of biological sequences based on formal lan-
guage theory. Genomics Inform 2011;9:5-11.

4. Nevill-Manning CG, Witten IH. Compression and ex-
planation using hierarchical grammars. Comput J 1997;40:1
03-116.

5. Lanctot JK, Li M, Yang E. Estimating DNA sequence entropy.
In: Proceedings of the 11th ACM-SIAM Symposium on
Discrete Algorithms, 2000 Jan 9-11, San Franciscon, CA.
Philadelphia: Society for Industrial and Applied Mathematics,
2000. pp. 409-418.

6. Cherniavsky N, Ladner R. Grammar-based compression of
DNA sequences. UW CSE Technical Report (TR2007-05-02).
In: DIMACS Working Group on the Burrows-Wheeler
Transfrom, 2004 Aug 19-20, Piscataway, NJ.

7. Carrascosa R, Coste F, Gallé M, Infante-Lopez G. Searching for
smallest grammars on large sequences and application to
DNA. J Discrete Algorithms 2012;11:62-72.

8. Galbadrakh B. Identifying hierarchical structure in biological
sequences based on context-free grammars. M.S. Thesis.
Seoul: Ewha Womans University, 2011.

