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Developing JSequitur to Study the Hierarchical 
Structure of Biological Sequences in a Grammatical 

Inference Framework of String Compression 
Algorithms
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Grammatical inference methods are expected to find grammatical structures hidden in biological sequences. One hopes that 
studies of grammar serve as an appropriate tool for theory formation. Thus, we have developed JSequitur for automatically 
generating the grammatical structure of biological sequences in an inference framework of string compression algorithms. 
Our original motivation was to find any grammatical traits of several cancer genes that can be detected by string 
compression algorithms. Through this research, we could not find any meaningful unique traits of the cancer genes yet, but 
we could observe some interesting traits in regards to the relationship among gene length, similarity of sequences, the 
patterns of the generated grammar, and compression rate. 
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Availability: JSequitur is freely available for academic purposes. Please contact neo@ewha.ac.kr.

Introduction

In formal language theory a language is simply a set of 
strings of characters drawn from some alphabet, where the 
alphabet (terminal) is a set of symbols. When we consider 
biological sequences simply as a language in the context of 
formal language theory (treating DNA, RNA, or protein 
sequences just as strings of alphabets of four nucleotides or 
20 amino acids), a grammatical inference method based on 
formal language theory can be applied [1-3].

Nevill-Manning and Witten [4] pioneered the attempt to 
produce the context-free grammarof biological sequences in 
an automatic way. This task can be formalized as the problem 
of finding the smallest context-free grammar by recursively 
replacing the repeats by a new symbol. The algorithm builds 
a hierarchy of phrases by forming a new rule out of existing 
pairs of symbols, including non-terminal symbols.

For example, if we consider the string “atattattatt,” the 
simplest way to represent the string by context-free gram-

mar is the following:
<Grammar 0>
S → atattattatt 
The most frequently occurring sequence in the string is 

“at,” which occurs four times. Thus, introducing a new 
nonterminal symbol, ‘A,’ and creating a new rule for this 
yields the following modified grammar:

<Grammar 1>
S → AAtAtAt
A → at, 
where the grammar consists of a start symbol (i.e., S), two 

terminal symbols (i.e., a, t) represented by lowercase letters, 
two non-terminal symbols (i.e., S, A) represented by 
uppercase letters, and two production rules (i.e., S → 

AAtAtAt, A → at) with a left- and a right-hand side con-
sisting of a sequence of these symbols.

Repeatedly replacing the frequently occurring patterns 
“At,” again to a new nonterminal symbol, B, gives the 
following modified grammar:
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Fig. 1. User interface of JSequitur program.

Fig. 2. JSequitur class diagram.

<Grammar 2>
S → ABBB
A → at
B→ At,
where the grammar consists of a start symbol (i.e., S), two 

terminal symbols (i.e., a, t), three non-terminal symbols 
(i.e., S, A, B), and three production rules (i.e., S → ABBB, A 
→ at, B → At).

By applying the three production rules by replacing an 
occurrence of the nonterminals on the left-hand side of the 
production rule with those that appear on the right-hand 
side, the string “atattattatt” can be derived from the 
non-terminal S by constantly applying a series of derivations: 
S → ABBB → atBBB → atAtBB → atattBB → atattAtB → 

atattattB → atattattAt → atattattatt.
Based on this concept, grammar-based compression algo-

rithms have shown some success for various applications 
[4-7]. Especially, grammar can capture distant repetitions 
occurring far apart, which was a limitation of sliding window 
approaches. However, grammar-based compression algori-
thms at this moment do not show the best performance for 
compression itself [6]. Thus, our motivation of this study is 
not to develop a new algorithm or find the most efficient way 
to compress biological sequences for storage purposes. Our 
sole purpose of developing a new tool is to investigate any 
grammatical traits of biological sequences, based on formal 
language theory.

Implementation

We have developed a slightly modified version of Se-
quitur [4] called JSequitur for automatically creating hie-
rarchical structures of sequences [8], as in Fig. 1. Our main 
contribution is to improve Sequitur to work better in a 
graphic user interface (GUI) environment, as our main in-
terest was in studying the generated grammar, rather than 
enhancing the compression rate itself. JSequitur is im-
plemented in Java and organized into six classes, as in Fig. 2: 
Sequitur, Symbol, Guard, Terminal, Nonterminal, and Rule. 
Sequitur class is called first and connects with all of the other 
classes. Symbol class is the connecter class, which streams 
sequences of input to the system. Rule class accesses 
Terminal and NonTerminal classes in order to create rules. 
Guard class, which is based on digram uniqueness, is 
responsible for rule confirmation.

Thus, our string compression algorithm operates by 
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No. Gene Length Compressed 
length

No. of 
rules

Compression 
ratio

 1 TERC 587 157  45 0.2675 
 2 MIF 1,099 265  79 0.2411 
 3 HSPB1 2,262 528 131 0.2334 
 4 TNFRSF6B 2,662 571 153 0.2145 
 5 S100A4 2,844 630 163 0.2215 
 6 CDKN2D 3,274 713 173 0.2178 
 7 GSTP1 3,977 847 200 0.2130 
 8 HRAS 4,301 869 206 0.2020 
 9 EMS1 4,741 978 235 0.2063 
10 TCL1A 5,498 1,142 264 0.2077 
11 TFF1 5,530 1,110 274 0.2007 
12 TCTA 5,553 1,104 279 0.1988 
13 MUC1 5,729 1,034 268 0.1805 
14 SNCG 6,148 1,221 271 0.1986 
15 IL6 6,312 1,283 287 0.2033 
16 CDKN1B 6,504 1,293 301 0.1988 
17 MYC 6,976 1,409 300 0.2020 
18 KLK3 7,604 1,487 329 0.1956 
19 GSTM1 7,734 1,525 325 0.1972 
20 CYP1A1 7,793 1,527 352 0.1959 
22 KISS1 7,997 1,526 342 0.1908 
23 ARHC 8,159 1,587 349 0.1945 
24 PLAU 8,318 1,624 346 0.1952 
25 MYCN 8,381 1,655 350 0.1975 
26 MYCL1 8,570 1,688 359 0.1970 
27 HSPCB 8,796 1,685 380 0.1916 
28 CYP2A6 8,982 1,701 395 0.1894 
29 BAX 9,021 1,667 383 0.1848 
30 CYP17 9,103 1,735 393 0.1906 
31 GSTT1 10,590 1,941 439 0.1833 
32 ING1 10,841 2,069 438 0.1909 
33 CYP1B1 11,152 2,128 443 0.1908 
34 NAT2 12,959 2,406 484 0.1857 
35 TFAP2C 12,976 2,458 510 0.1894 
36 FGF8 13,312 2,437 507 0.1831 
37 CDKN1A 14,144 2,645 524 0.1870 
38 RASSF1 14,497 2,621 533 0.1808 
39 CTSD 14,613 2,558 532 0.1751 
40 BIRC5 14,872 2,536 571 0.1705 
41 MMP11 14,908 2,695 555 0.1808 
42 PCNA 15,170 2,726 572 0.1797 
43 CYP2E 15,280 2,750 582 0.1800 
44 RCA1 15,646 2,660 611 0.1700 
45 BAG1 15,979 2,967 572 0.1857 
46 CCNE1 16,009 2,902 589 0.1813 
47 CCND1 17,380 3,132 597 0.1802 
48 BCL1 17,380 3,132 597 0.1802 
49 TAL1 17,525 3,154 629 0.1800 
50 NAT1 18,081 3,236 634 0.1790 
51 CEACAM8 19,094 3,348 662 0.1753 
52 LIBC 20,296 3,603 711 0.1775 
53 VEGF 21,163 3,702 720 0.1749 
54 MPL 21,659 3,807 723 0.1758 
55 SLC2A3 22,189 3,853 748 0.1736 

Table 1. One hundred four genes and their compression rates

No. Gene Length Compressed 
length

No. of 
rules

Compression 
ratio

 56 STIP1 23,964 4,022 825 0.1678 
 57 TP53 24,886 3,972 860 0.1596 
 58 IGF2 26,633 4,512 881 0.1694 
 59 CSK 27,449 4,662 875 0.1698 
 60 STK11 29,427 4,792 932 0.1628 
 61 TFAP2A 29,746 5,180 923 0.1741 
 62 ERBB3 30,527 5,021 961 0.1645 
 63 MSH6 31,034 5,038 973 0.1623 
 64 MLLT6 31,438 5,346 974 0.1700 
 65 BCL6 31,653 5,426 971 0.1714 
 66 SLC22A1L 33,184 5,440 1,010 0.1639 
 67 PSEN2 33,192 5,660 978 0.1705 
 68 CDKN2A 34,762 5,940 987 0.1709 
 69 TPMT 34,883 5,702 1,053 0.1635 
 70 POU2AF1 35,332 5,809 1087 0.1644 
 71 MMP2 35,758 6,058 1,074 0.1694 
 72 PI5 36,627 6,098 1,079 0.1665 
 73 COMT 36,706 5,860 1,131 0.1596 
 74 TFAP2B 37,554 6,392 1,123 0.1702 
 75 NOTCH4 37,993 6,191 1,123 0.1630 
 76 TOP2A 38,258 6,027 1,159 0.1575 
 77 MKI67 38,410 6,258 1,152 0.1629 
 78 SLC2A1 43,942 7,254 1,178 0.1651 
 79 MDM2 48,414 7,466 1,409 0.1542 
 80 CD9 49,342 7,937 1,400 0.1609 
 82 THBS2 49,741 7,801 1,377 0.1568 
 83 BCAR1 50,730 8,015 1,397 0.1580 
 84 PPP2R1B 51,400 8,203 1,452 0.1596 
 85 SH3GL1 52,262 8,222 1,465 0.1573 
 86 ERBB2 52,679 8,151 1,504 0.1547 
 87 TERT 54,445 7,781 1,531 0.1429 
 88 PDGFRB 54,627 8,684 1,533 0.1590 
 89 AXL 55,332 8,369 1,608 0.1513 
 90 GAS6 56,583 8,476 1,551 0.1498 
 91 EFNB2 58,902 9,472 1,538 0.1608 
 92 KRAS2 59,377 9,280 1,623 0.1563 
 93 TSG101 60,640 9,516 1,640 0.1569 
 94 EIF3S6 61,084 9,600 1,574 0.1572 
 95 WT1 62,089 9,980 1,718 0.1607 
 96 RARA 63,015 9,783 1,681 0.1552 
 97 TNFRSF10B 63,771 9,896 1,720 0.1552 
 98 NOTCH1 66,745 8,476 1,551 0.1270 
 99 LASP1 67,486 10,220 1,816 0.1514 
100 EIF4E 67,834 10,262 1,814 0.1513 
101 ARHA 68,833 9,651 1,917 0.1402 
102 PML 69,091 10,636 1,826 0.1539 
103 CHEK2 70,320 10,317 1,921 0.1467 
104 COT 70,410 10,930 1,797 0.1552 

Table 1. Continued

reading in a new symbol and processing it by appending it to 
the top-level string and then examining the last symbols of 
that string; it then applies zero or more of the following 
transformations until none applies anywhere in the grammar; 
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Fig. 3. Compression rates
in relation to gene length.

it then repeats the cycle by reading in a new symbol. 
The following production rules, which have been created 

automatically, are an exemplary output of applying JSequitur 
to the partial sequence of the TERT gene (175 bp, 
“gcccccgggtgtccctgtcacgtgcagggtgagtgaggcgcggtccccgggtgtc
cctgtcacgtgcagggtgagtgaggcgcggtccccgggtgtccctgtcacgtgcag
ggtgagtgaggcgcggtcccc”):

R0 → g R1 R2 R3 R4 R5 R6 R7 R6 R8 R5 R9 R1 R3 R4 R10 
R11 g a R4 a R12 R13 R14 R7 R15 R8 R16 R10 R14 c

R1 → c c
R2 → R1 c
R3 → R11 R17 R2 R18
R4 → R17 g
R5 → R16 R13 R19
R6 → t R2
R7 → R19 R4
R8 → R18 R4
R9 → t R1
R10 → a a
R11 → R12 R17
R12 → g g
R13 → c g
R14 → R19 R15
R15 → R9 c
R16 → R10 R11 g a R4 a R12
R17 → g t
R18 → t R17 R10 c
R19 → R13 g,
where the grammar consists of a start symbol (i.e., R0), 

four terminal symbols (i.e., a, t, g, c), 20 non-terminal 
symbols (i.e., R0-R19), and 20 production rules for each 
nonterminal. In summary, the partial sequence of 175 bp of 
the TERT gene could be compressed to 37 symbols with 20 
rules. 

For testing purposes, 104 cancerous genes from 6 cancer 

types (bladder, breast, endometrial, leukemia, lung, and 
melanoma) were initially chosen, and JSequitur was applied. 
Table 1 shows the result of applying one of the string 
compression algorithms of JSequitur to these genes. 

The rule column in Table 1 shows the number of generated 
rules from the context-free grammar, while the ratio column 
shows the ratios of the compressed sequences vs. the 
original sequences.

Fig. 3 is a sorted diagram in the order of the length of the 
original sequence. In this specific case, it shows that the 
length of the original sequence influences the compression 
rate of the target sequence, even though there are many 
other factors that influence compression rate. For example, 
compression rate can also be influenced by the algorithm 
itself, depending on whether we replace the longest pattern 
first or the most frequently occurring pattern first. 

We also compared some mouse genes to find any ho-
mologous traits in regards to compression rate and hie-
rarchical structure of the grammar. For example, we 
compared human MUC1 (Homo sapiens, 5,279 bp) with 
mouse MUC1 (Mus musculus, 5,614 bp), and the com-
pression rates for these two sequences were 0.180 and 0.195, 
respectively. For the ARHA genes, the compression rate for 
human ARHA (68,833 bp) was 0.140, whereas that for 
mouse ARHA (41,255 bp) was 0.157. Thus, the distance on 
the evolutionary tree can be measured by compression 
algorithms, to a certain extent. 

Conclusion and Future Direction

We have developed a GUI-based JSequitur, based on string 
compression algorithms, to examine grammatical traits of 
biological sequences. On top of compression capacity, a 
string compression algorithm is appealing for studying 
biological sequences, because it can give insights into the 



270 www.genominfo.org

B Galbadrakh, et al. Developing JSequitur to Study the Structure of Biological Sequences

structure of these sequences. Precisely constructed models 
for linguistic structure can play a vital role in the process of 
discovery itself.

We also applied JSequitur to analyze 104 cancer genes for 
testing purposes only. Even though there are some 
interesting results in regards to the relationship among gene 
length, similarity of sequences, the patterns of the generated 
grammar, and compression rate, our test samples were too 
small to conclude anything. Thus, our result should be 
regarded as preliminary for future research. We should 
consider various factors other than grammatical structures 
and compression rates.

As our main purpose of developing the tool was to exa-
mine any grammatical traits of biological sequences, the 
graphical user interface was important for a semiautomatic 
screening process. However, we still need to implement 
various features to compare gene structures to summarize 
statistics in regards to grammatical structures and to 
combine evolutionary trees. Hopefully, these features will be 
implemented in the next version of JSequitur. We also hope 
to enhance the algorithm more elaborately to handle 
reversal, translocation, and shuffling.
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