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Introduction 

Lung cancer is one of the main causes of the dead worldwild in recent decades and has 
become a communal healthiness subject [1]. Mostly, non–small cell lung cancer (NS-
CLC) causes the dominant population of lung malignancy cases. Among them, just 15% 
of cases have had a chance to be alive until the 5 years [2]. Mostly these cases have been 
recognized with metastatic or locally advanced disease while the prognoses are still insig-
nificant [3]. Thus, there is a great significance to dedicating the predictive or diagnostic 
and molecular mechanisms and biomarkers for NSCLC pathogenesis. 
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Non–small cell lung cancer (NSCLC) is an important cause of cancer-associated deaths 
worldwide. Therefore, the exact molecular mechanisms of NSCLC are unidentified. The 
present investigation aims to identify the miRNAs with predictive value in NSCLC. The two 
datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differen-
tially expressed miRNAs (DEmiRNA) and mRNAs (DEmRNA) were selected from the nor-
malized data. Next, miRNA-mRNA interactions were determined. Then, co-expression net-
work analysis was completed using the WGCNA package in R software. The co-expression 
network between DEmiRNAs and DEmRNAs was calculated to prioritize the miRNAs. Next, 
the enrichment analysis was performed for DEmiRNA and DEmRNA. Finally, the drug-gene 
interaction network was constructed by importing the gene list to dgidb database. A total 
of 3,033 differentially expressed genes and 58 DEmiRNA were recognized from two data-
sets. The co-expression network analysis was utilized to build a gene co- expression net-
work. Next, four modules were selected based on the Zsummary score. In the next step, a bi-
partite miRNA-gene network was constructed and hub miRNAs (let-7a-2-3p, let-7d-5p, 
let-7b-5p, let-7a-5p, and let-7b-3p) were selected. Finally, a drug-gene network was con-
structed while SUNITINIB, MEDROXYPROGESTERONE ACETATE, DOFETILIDE, HALOPERIDOL, 
and CALCITRIOL drugs were recognized as a beneficial drug in NSCLC. The hub miRNAs and 
repurposed drugs may act a vital role in NSCLC progression and treatment, respectively; 
however, these results must validate in further clinical and experimental assessments. 
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The investigation has illustrated momentous relations among 
gene modifications, tumorigenesis and cancer progress of various 
kinds of NSCLC-relative tumors [4]. In current studies, the over-
expression of CD44 was reported due to its crucial role in the oc-
currence development and migration of NSCLC [5]. Another 
study introduced some tumor-specifically methylated genes such 
as sperm associated antigen 6 which involved in NSCLC [6]. Late-
ly, it was described that FPR1 mRNA levels in total plasma can 
prognoses small cell lung cancer (SCLC) and NSCLC [7]. Based 
on our previous knowledge, an enormous collection of non-cod-
ing RNAs are microRNAs that are 20–24 nucleotides in length on 
average. These miRNAs are elaborate in the fine-tuning of many 
biological processes. In a way that, they can bind to numerous tar-
get mRNAs typically and control the post-transcriptional of gene 
expression level [8]. Recent studies reported some miRNAs such 
as hsa-miR-30d [9] and miR-598 that have a possible tumor re-
pressor role in the progression of NSCLC by repressing the migra-
tion and invasion in NSCLC [10]. However, the role of some 
miRNAs and genes there are still unknown in NSCLCs [11]. 

Many studies have used different bioinformatics analyses to 
identify novel and potential biomarkers that can detect cancers in 
the early stages [12-14]. For instance, Abedi et al. [15], used inter-
actions among miRNAs and genes through bipartite networks and 
introduced miRNA and genes biomarkers in altered bladder can-
cer samples. Characterization of expression with high-throughput 
microarrays has become a major and common skill to obtain 
worldwide complementary insights into tumor genes and to iden-
tify new cancer biomarkers [11]. 

In the present evaluation, we presented a comprehensive analy-
sis of miRNAs and gene expression by reanalyzing the 
GSE102286 and GSE101929 public datasets. The differentially 
expressed genes (DEGs) and miRNAs (DEmiR) were recognized 
in NSCLC models compared to healthy ones. Then, the DEmiRs-
DEGs interactions were performed with subsequent analysis of 
functional enrichment to construct the regulatory networks of 
miRNA and genes. Eventually, a drug-gene interaction network 
was built using the DGIdb to detect candidate medicines to target 
the genes of hub miRNAs [16]. Through extensive bioinformatics 
investigation, we expect to discover new helpful goals and bio-
markers for NSCLC. 

Methods 

Dataset and preprocessing 
In the current evaluation, the expression data with GSE101929 
and GSE102286 accession numbers were obtained from the Gene 

Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). The GSE101929 and GSE102286 have 66 (con-
taining 34 normal and 32 NSCLC samples) and 179 (containing 
88 normal and 91 NSCLC samples) samples, respectively. These 
datasets were downloaded using the GEOquery package [17]. 
Then, the data were normalized with log2 +1 and normalized 
quantile method [18], and DEGs were extracted using R, limma 
package [19]. Next, up and down regulated gene and miRNA lists 
were achieved. 

Co-expression network analysis 
To build the co-expression network, DEGs were utilized. Next, we 
constructed a co-expression network using the WGCNA package 
[20]. A β parameter (soft threshold power beta) was utilized to ar-
range the scale-free property of the network, and then arranged for 
7. Scale independence and mean connectivity of R2 and various 
soft thresholds are indicated in Supplementary Fig. 1. Among 
powers alternating from 1 to 20, β = 7 was chosen to find scale in-
dependence for the network and the scale free exponent R2 was 
0.952. A topological overlap matrix was computed afterward creat-
ing the adjacency matrix of the expression data. The WGCNA 
classified grouping was applied to elicit the modules of the co-ex-
pression network. Additionally, the DeepSplit and Minimum Mod-
ule Size limitations were allocated values of 4 and 20, respectively, 
by looking at various parameters. The elicited modules were then 
combined and color-labeled. 

The Zsummary value was employed to dissect module preservatio-
ne. Zsummary score is imputed from half of the sum of Zdensity and Zcon-

nectivity. The Zsummary score was utilized to compare the significance of 
detected statistics. The Zsummary values were considered ≤2, be-
tween 2 and 10, and >10 as not conserved, temperately conserved, 
and powerfully conserved, separately [21]. The modules that have 
Zsummary values of more than 10 did not offer any details because 
they were powerfully conserved; therefore, these modules were 
not utilized (Supplementary Fig. 2). 

miRNA-mRNA bipartite network reconstruction 
First, we extracted miRNAs that target the genes in all selected 
modules from the miRWalk 2.0 database. Considering that miR-
NA-mRNA interactions have been confirmed experimentally, we 
constructed a bipartite network using miRNAs and genes derived 
from selected modules. It is noticeable that we used the DEmiR-
NAs at the final to construct a bipartite network containing 119 
genes and 29 miRNAs. Next, by studying the relationships be-
tween genes and their cooperating miRNAs, the node miRNAs 
with the maximum connectivity were taken to continue substan-
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tial contacts and elude density. Finally, the output file was import-
ed to Cytoscape [22] software to visualize a further analysis. 

Enrichment analysis of DEgenes and DEmiRNAs 
Functional enrichment analysis was implemented via the DAVID 
[23] database (https://david.ncifcrf.gov/) for identifying the most 
related biological mechanisms to the genes. This database was 
used for annotation, visualization, and Integrated discovery. More-
over, Reactome [24] pathway database was utilized to identify the 
pathway enrichment analysis. In the next step, the TAM tool [25] 
was utilized to enrich the miRNAs. Furthermore, the function and 
family of the miRNAs were identified using the TAM tool by de-
faulting limitations. 

Construction of drug-gene interaction network 
The DGIdb (https://www.dgidb.org/) (Drug Gene Interaction 
Database) [26] was utilized for detecting the candidate drugs that 
target the genes. This database is associated with 22 other con-
nected databases that obtain the interaction based on 24 associat-
ed databases. In this study, only approved interactions were used 
to identify drug–gene interactions information. After importing 
the list of genes to the DGIdb database, the list of drug-gene inter-
actions was obtained. 

Results 

Identification of differentially expressed genes and miRNAs 
To find a list of genes and miRNAs that are involved in NSCLC, we 
evaluated GSE101929 and GSE102286 datasets. Table 1 provides 
more information about these datasets. Finally, 3033 and 58 DEGs 
and miRNAs were obtained, respectively (Supplementary Tables 1 
and 2) while 1,244 genes were meaningfully up-regulated, 1,790 
genes were significantly down-regulated (Supplementary Table 1). 
Also, 47 miRNAs were significantly up-regulated and 11 miRNAs 
were significantly down-regulated (Supplementary Table 2). 

Module detection and co-expression network analysis 
Three gene co-expression network was built through WGCNA on 
3,033 DEGs. In this network, the lowest and the biggest modules 

were plum1 and yellow including 21 and 204 genes, individually. 
The grey module in this network incorporated 108 genes, which 
were omitted from the additional investigation. The Supplementa-
ry Table 3 indicated more information about all modules. Addi-
tionally, cluster dendrogram are shown in Supplementary Figs. 3 
and 4. The unpreserved modules might modify numerous signal-
ing cascades and cause progression cancer. After Zsummary values im-
puting for all modules, the thresholds = 2.5 were used for module 
(Supplementary Fig. 1). Thus, modules with a Zsummary ranging 
from 1 to 2.5 were chosen as important modules. These modules 
are displayed as unpreserved and could be valuable in the develop-
ment of NSCLC. Lastly, the type of network was selected as the 
signed-hybrid network. The conservation of median rank and 
Zsummary  beside the module size is illustrated in Supplementary Fig. 
2. Finally, 4 modules with Zsummary scores ≤2.5 were chosen (Table 
2 illustrates certain modules by their characteristics). Consequent-
ly, yellow green, light green, plum1, and sky blue modules revealed 
low conservation (Table 1).  

miRNA-mRNA bipartite network reconstruction 
A miRNA-mRNA bipartite network was assembled using selected 
modules and their relevant miRNAs. The microRNAs with more 
connections controlled an additional important number of genes, 
utilizing a significant influence on the post-transcriptional rule. 
Next, the top 5 miRNAs (hubs) were selected from the network 
and utilized for extra investigation besides their target genes. It is 
vital to choose one hub miRNAs to elude difficulty and eliminate 
miRNAs with small properties on the network and pathogenesis. 
Fig. 1 indicates the bipartite network with five hub miRNAs and 
related genes. 

Enrichment analysis of miRNAs and genes 
In this section, the gene ontology enrichment analysis was per-
formed to evaluate the significant pathways, and the Reactome 
pathway database was utilized for the path enrichment investiga-
tion. The result indicated the most important pathways for genes 
in bipartite network were “Tight junction,” “Epithelial cell signal-
ing in Helicobacter pylori infection,” and “Focal adhesion.” Also, the 

Table 1. Number of data samples according to their sexes in GSE101929

Sex Normal Tumor
Male 15 15
Female 19 17
Total 32 32

Table 2. Extracted modules and their properties 

Module color Value of Zsummary No. of genes in module
1 Yellow green 1.5 24
2 Light green 2.2 66
3 Blue sky 2.0 24
4 Plum1 1.8 21
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Fig. 1. Bipartite miRNA-mRNA subnetwork. The Cytoscape v.3.8.2 was utilized to imagine the network.

TAM tool was used to annotate hub miRNAs. The most import-
ant functions for hub miRNAs were “Cell deviation,” “Folliculo-
genesis,” “Adipocyte differentiation,” “T-cell differentiation,” “He-
matopoiesis,” “Aging,” “Tumor suppressor miRNAs,” “Cell death,” 
“Glucose metabolism,” “Innate immunity,” “Cell cycle,” “Cell pro-
liferation,” and “Bone regeneration.” 

Construction of drug-gene interaction network 
The DGIdb was utilized to find drugs that target the genes. After 
importing the genes into DGIdb, drug-gene interactions were col-
lected for the genes by restrictive medicines to agreed medicines. 
Then, the drug-gene interactions network is constructed and visu-
alized by Cytoscape (version 3.8.2). As a result, there were a lot of 
drugs in this network (Fig. 2). Noticeably, the drug-gene network, 
SUNITINIB targeted vascular endothelial growth factor C (VEG-
FC) and KDR (Fig. 3). After analyzing the network, based on hub 
degree, the important drugs were extracted. Fig. 3 provides the five 
important drugs including SUNITINIB, MEDROXYPROGES-
TERONE ACETATE, DOFETILIDE, HALOPERIDOL, and 
CALCITRIOL with their targeted genes. 

Discussion 

In the current evaluation, the expression profile of miRNAs and 
miRNAs was evaluated in NSCLC to determine miRNA biomark-
ers, and the co-expression network analysis was completed based 
on gene expressions. First, differentially expressed and significant 
mRNAs (adjusted p-value < 0.01 and log FC > |1|) and miRNAs 
(adjusted p-value < 0.01) were chosen. Therefore, 3033 genes were 
utilized to build the co-expression network. Next, a co-expression 
network was reconstructed using the WGCNA package. The ex-
tracted modules were merged based on Zsummary. Meanwhile, as the 
distinction of very connected modules is problematic, it is suggest-
ed to combine them [27]. Then, a bipartite network was built with 
miRNAs and their cooperating genes. Hub miRNAs with an es-

sential character in the gene modulation were identified and uti-
lized to generate a subnetwork. Subsequently, a drug-gene interac-
tion network was constructed and important drugs were repur-
posed by importing the genes in the bipartite network. The men-
tioned miRNAs were the future biomarkers of NSCLC and were 
found via our method. We studied the found biomarkers exactly. 

In the first step, the miRNAs we studied in the literature [15]. 
All miRNAs that were obtained belong to the let-7 family. It is re-
ported that miRNA-let-7a (let-7a) can suppress cell development 
in numerous cancers, and it is downregulated in lung adenocarci-
noma tissues compared with regular tissues [28]. Also, let-7a over-
expression successfully repressed cancer migration, invasion, and 
cell proliferation in A549 and H1299 cells while it stimulated cell 
apoptosis and cell cycle arrest. Additionally, regulating cyclin D1 
signals are performed by let-7a and lead to reduce cell growth [28]. 
Increasing lung tumor development was reported by losing the let-
7 role in mouse models, while let-7 exogenous transfer decreased 
the tumor weight by recognizing cancers in mouse replicas of NS-
CLC [29]. In another study let-7g efficiently encourages cell cycle 
detention and cell death in K-RasG12D expressing murine lung 
cancer cells by targeting KRAS oncogene. Certainly, in lung ade-
nocarcinoma (LUAD) cells and tissue samples let-7b-3p was 
down-regulated that is in relation with poor prognoses in LUAD 
patients while targeted the BRF2-mediated MAPK/ERK pathway. 
So, it can suppress the LUAD cells proliferation and metastasis in 
vivo and in vitro [30]. These indications reveal that the let-7 family 
can help as a predictive sign and beneficial aim in NSCLC [31]. 
Based on previous investigations, the let-7 family is well known as 
lung cancer associated miRNA that is in line with the candidate 
miRNAs that were found in our projected method. The role of our 
finding miRNAs did not report exactly in NSCLC [32]. We advise 
that these miRNAs might be potentially linked with NSCLC and 
can be important biomarkers for NSCLC diagnosis in the initial 
identification of NSCLC. 

Among other datasets from GEO, the datasets were selected 
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Fig. 2. The candidacy drug-gene network extracted from DGIdb database. The candidacy drugs (green elips) recognized as controllers of the 
genes. Cytoscape v.3.8.2 was utilized to imagine the network.

Fig. 3. Five important drugs with their targets.
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with some options for focusing and exploring on the relationships 
between miRNA and mRNA, specially, based on our project de-
signing. Finally, and it clearly was beneficial when it validated our 
interactions. By using these purpose-driven datasets, we made sure 
that our suggested miRNA-mRNA associations had undergone 
rigorous experimental validation, which boosts our confidence in 
the results. Moreover, the careful selection of these datasets al-
lowed us to delve deeply into these interactions and uncover net-
works that govern a wide range of biological processes [32]. The 
specific and discovered miRNA-mRNA associations in this study 
are potential as promising candidates for experimental validation 
and functional studies by providing fresh insights into biological 
mechanisms [33]. However, in this study there were some limita-
tions in terms of generalizability to all gene interactions. Thus, the 
conclusions drawn from the two datasets may not fully represent 
the spectrum of miRNA-mRNA regulatory interactions. To ad-
dress this limitation, future research should consider incorporating 
datasets from experimental conditions and biological contexts to 
enhance our understanding of miRNA-mRNA networks [16]. 

In the subsequent section, important drugs and their target 
genes were evaluated. Sunitinib targeted VEGFC and KDR genes 
by inhibiting the tyrosine kinase receptors, containing platelet-de-
rived development factor receptors and vascular endothelial devel-
opment factor receptors, which have single-agent antitumor action 
in intractable NSCLC [34]. It has been reported that patients with 
progressive lung adenocarcinoma preserved with medroxyproges-
terone, celecoxib, and dietary interventions may experience im-
portant improvement in some Systemic Immune-Metabolic Syn-
drome outcomes [35]. The mechanism of medroxyprogesterone 
is unclear in cancer but it may be associated with appetite stimula-
tion [35]. Haloperidol was an important drug in our result and 
this drug was repurposed by evaluating drug repositioning NS-
CLC using gene co-expression and drug-gene interaction net-
works analysis [36]. There is not any evidence about the relation-
ship between NSCLC and other drugs like calcitriol and dofeti-
lide. Based on investigation in literature, some of our extracted 
drugs were approved to treat NSCLC. However, some of them 
have not been evaluated in clinical investigates that can be studied 
experimentally. 

Our study was designed to present drug candidates and poten-
tial miRNAs as a biomarkers in NSCLC by performing a predic-
tive method. The gene co-expression network analysis process was 
applied to the data obtained from the GEO database. Then, bipar-
tite networks (miRNA-mRNA) were obtained from the co-ex-
pression networks which were reconstructed on the genes from 
significant modules. Subsequently, hub miRNAs were also identi-

fied. These miRNAs that have the maximum degree of connectivi-
ty were considered as probable predictive biomarkers for NSCLC. 
Based on our main aim, these miRNAs were found to target mod-
ulus genes while there is not any information on their expression 
level in NSCLC. Therefore, their expression level assessment 
would be essential for the validity of NSCLC in future experimen-
tal studies like clinical trials. Various therapies such as immuno-
therapy, targeted therapy and chemotherapy have been approved 
to improve survival in patients with advanced and metastatic can-
cers. However, genomic unpredictability and signal transduction 
redundancy are challenges in the NSCLC treatment. Planning is 
needed to increase the efficacy of drug interactions in the preclini-
cal setting. The current complementary assessment emphasized 
the status of this topic in the provision of medicine. Furthermore, 
this study presented a powerful tool for developing approaches to 
the discovery and development of new drugs.  
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