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Introduction 

In 2022, the American Cancer Society estimated that approximately 800,000 people were 
diagnosed with liver cancer and 700,000 died from the disease worldwide. Liver cancer is 
the third leading cause of cancer death, partly reflecting that the lack of accurate liver can-
cer-specific diagnostic tools has limited early diagnosis [1,2]. There has recently been in-
creasing interest in immunotherapy and targeted therapy [3], but the diagnosis and treat-
ment of liver cancer remain challenging. Developing novel diagnostic tests and treatments 
is critical for improving the prognosis of patients. Therefore, we must better understand 
the genomic characteristics of liver cancer. 

The most common type of primary liver cancer is hepatocellular carcinoma (HCC), 
which is a malignant tumor of hepatocytes. The causes of HCC are very diverse; they in-
clude chronic infection with hepatitis B virus or hepatitis C virus, alcohol abuse, and met-
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abolic disease [4]. This heterogeneity makes standardized chemo-
therapy ineffective, resulting in frequent metastases to nearby or-
gans, poor prognoses, and high mortality rates [5]. Researchers 
have thoroughly scrutinized and categorized the transcriptomes of 
numerous HCC tissue samples [6-8], but we still know relatively 
little about the relevant three-dimensional (3D) interactions be-
tween distant gene loci, which have been shown to play a crucial 
role in regulating gene expression [9]. 

The mammalian genome maintains a highly organized and dy-
namic 3D form that arises from two kinds of interactions [10]. At 
the megabase (Mb) scale, the genome is partitioned into A and B 
compartments. Active chromatin, which possesses high-transcrip-
tion histone markers and many genes, is called the A compart-
ment, whereas inactive chromatin, which is gene-poor and pos-
sesses gene-silencing histone markers, is called the B compartment 
[11]. At the sub-Mb level, each compartment is divided into 
smaller, self-interacting domains called TADs (topologically asso-
ciated domains), which are insulated from neighboring domains 
[12-14]. Although the precise function of TADs is not yet fully 
understood, it is believed that they contribute to regulating gene 
expression by helping ensure that cis-regulatory elements and their 
target promoters are brought into proximity with one another 
[15]. Therefore, from the perspective of epigenetics, studying 3D 
chromatin organization is essential to understanding the mecha-
nisms of gene expression regulation. 

To characterize the 3D chromatin landscape of HCC cell lines, 
we performed in situ Hi-C and assay for transposase-accessible 
chromatin sequencing (ATAC-seq) of four HCC cell lines and 
compared the results to those of a normal epithelial cell line. This 
comprehensive analysis of the chromatin interactions in HCC ex-
tends our knowledge of genome topology and epigenetics in hepa-
tocellular carcinoma. 

Methods 

Cell culture 
This research used four HCC cell lines: Hep3B, Huh1, Huh7, and 
SNU449 (Table 1). The HCC cell lines were cultured and harvest-
ed in the laboratory of Kyung Hyun Yoo at Sookmyung Women’s 
University. We used human mammary epithelial cells (HMECs) 
from normal female mammary tissue as non-cancer control sam-
ples (primary mammary epithelial cells; normal, human; ATCC 
PCS-600-010). HMECs were cultured in mammary epithelial cell 
basal medium (ATCC PCS-600-030) supplemented with compo-
nents from a mammary epithelial cell growth kit (ATCC PCS-
600-040). All cell lines were grown at 37°C in a humidified incu-

bator with 5% CO2. 

Cell harvest 
We harvested cells with 0.05% trypsin-EDTA, resuspended 5 mil-
lion cells in 5 mL 1× phosphate buffered saline (PBS), added 274 
μL of 36.5% formaldehyde (final concentration, 2%), mixed the 
solution thoroughly by inversion, and incubated the suspended 
cells at room temperature for 10 min. We added 400 μL of 2.5 M 
glycine and placed the sample on ice for 15 min. Cells were pel-
leted by centrifugation at 500 ×g for 5 min, the supernatant was 
discarded, and the cells were resuspended in 5 mL 1× PBS. The 
cells were equally distributed to five new tubes (1 million cells/
tube) and pelleted by centrifugation, and the supernatant was dis-
carded. 

In situ Hi-C and library sequencing 
We followed the Arima-HiC protocol (cat No. A160259, Arima 
Genomics, Inc., San Diego, CA, USA) to perform in situ Hi-C with 
1 million harvested cells. We generated a library using an Ari-
ma-HiC kit (cat No. A510008, Arima Genomics, Inc.) and se-
quenced the library using the 150 bp paired-end method of the Il-
lumina NovaSeq 6000 system (Illumina, San Diego, CA, USA).  

Assay for transposase-accessible chromatin sequencing  
Harvested nuclei of 50,000 cells were incubated in 25 μL fresh TD 
buffer (10 mM Tris-HCl, pH 8.0, 5 mM MgCl2, and 10% dimeth-
ylformamide) with 2.5 μL Tn5 transposase for 30 min at 37°C. We 
purified DNA fragments with a QIAquick PCR purification kit 
(cat No. 28106, Qiagen, Hilden, Germany) and amplified the li-
brary using a KAPA HiFi HotStart ReadyMix (KK2061, Roche, 
Mannheim, Germany) as described in the provided manual, with 
adjustment of the PCR cycle number. The resulting libraries were 
purified with a QIAquick PCR purification kit. The purified librar-
ies of HCC cell lines were sequenced via the 150 bp paired-end 
method of the Illumina NovaSeq 6000 system. The 150 bp paired-
end method of the Illumina HiSeq 2500 system was used for 
HMECs. 

Table 1. Characteristics of cell lines

Cell line Host Morphology HBV integration
Hep3B Black male, 8 y Epithelial Positive
Huh1 Japanese male, 53 y Epithelial-like Positive
Huh7 Japanese male, 57 y Epithelial-like Negative
SNU449 Korean male, 52 y Epithelial Positive
HMEC Adult female breast tissue Epithelial Negative

HBV, hepatitis B virus.
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Data processing and analysis 
In situ Hi-C analysis 
The in situ Hi-C sequencing data were analyzed using HiC-Pro 
[16]. Each raw file was aligned to the human genome (hg19) and 
filtered. Replicate data were merged. Contact matrices were built 
from the merged data, and iterative correction and eigenvector de-
composition (ICE) normalization were applied. Various resolu-
tions (10, 20, 40, 100, and 500 kb) of ICE- normalized Hi-C ma-
trices were generated, and annotation files indicating genomic bins 
were developed. Contact probability calculation and principal 
component analysis (PCA) to define the compartment were done 
using Cooltools at a 100 kb resolution [17]. To define TAD 
boundaries, reciprocal insulation (RI) scores were calculated using 
CaTCH at 20 kb resolution [18]. For most of the Hi-C analyses, 
including relative contact probability analysis, TAD insulation 
scoring, aggregate TAD analysis, and aggregate peak analysis, 
GENOVA was used [19]. To identify chromatin loop interactions, 
the HiCCUPS algorithm of juicer tools was used with default pa-
rameters [20]. 

ATAC-seq analysis 
For ATAC-seq analysis, the adaptors of raw reads were trimmed 
with Cutadapt [21], and the trimmed sequences were mapped to 
the human genome (hg19) via Bowtie2 (version 2.5.0) with de-
fault parameters [22]. The aligned bam files were merged and 
sorted with SAMtools [23]. The bam2wig tool of the RSeQC tool 
was used to generate bigwig files [24]. 

Total RNA-sequencing analysis 
For the total RNA-sequencing (RNA-seq) analysis, raw reads were 
aligned to the human genome (hg19) using STAR (version 
2.7.10) with default parameters [25]. Cufflinks (fr-firststrand) was 
used to analyze differential expression levels [26]. CummeRbund 
was used to create certain plots [27]. Additional plots, including 
box plots, were drawn with the R package, ggplot2 [28]. Heatmaps 
were drawn with Java Treeview [29], and the examples of ge-
nome-wide data were visualized using the Integrative Genomics 
Viewer (IGV) [30]. 

Public data acquisition 
Publicly released total RNA-seq data were downloaded from 
NCBI Gene Expression Omnibus (GEO) datasets. These files 
were obtained in fastq format. The total RNA-seq data of Hep3B, 
Huh1, Huh7, and SNU449 cells (GSM2551564, GSM2551568, 
GSM2551570, and GSM2551589, respectively) were obtained 
from GSE97098 [31]. The total RNA-seq data of HMECs 

(GSM5667415) were obtained from GSE187119 [32].  

Data availability 
The Hi-C and ATAC-seq datasets have been deposited in the 
NCBI GEO; http://www.ncbi.nnlm.nih.gov/geo/) under acces-
sion number GSE226217 (SuperSeries). This SuperSeries 
(GSE226217) is composed of two SubSeries: GSE226215 
(ATAC-seq) and GSE226216 (Hi-C).  

Results 

Long-range interactions are increased in HCC cell lines 
To investigate the 3D chromatin organization of HCC cell lines, 
we performed in situ Hi-C in four HCC cell lines and HMECs 
(Fig. 1), with two biological replicates for each cell line. We com-
pared genome-wide Hi-C features between HCC cell lines and 
HMECs. We found significantly more long-range interactions, in-
cluding intrachromosomal and interchromosomal interactions, in 
all four HCC cell lines relative to HMECs. Long-range interactions 
especially increased in Hep3B and Huh7, compared to Huh1 and 
SNU449. 

First, the trans-interactions (i.e., interchromosomal interactions) 
were explored. Our results revealed that HCC cell lines had higher 
observed versus expected (obs/exp) trans-contact ratios (Fig. 1A) 
than HMECs. All trans-contact counts were much lower than ex-
pected in the case of HMECs, but not in HCC cell lines. The 
whole-contact maps, which compared the ratio of interactions 
throughout the genome between HCC cell lines and HMECs, also 
reflected this difference (Fig. 1B). Most trans-bins indicated higher 
contact frequencies in HCC cell lines. Along with these differences 
in the contact maps, we observed that all chromosomes of HCC 
cell lines had decreased cis-contact percentages compared to 
HMECs (Fig. 1C). In other words, in HCC cell lines, the number 
and ratio of trans-contacts in most chromosomes were consistently 
higher than those of HMECs. Previous studies reported that cancer 
genomes undergo various chromosomal rearrangements, including 
chromosome duplications, deletions, and translocations [33,34]. 
To prevent chromosomal rearrangement from affecting our result, 
we calculated copy number variations (CNVs) using HiCnv [35] 
(Supplementary Table 1, Supplementary Fig. 1). Consistent with 
our previous results, HCC cell lines had higher trans-contacts in 
contact maps with no CNV regions (Supplementary Fig. 1A). 

Markedly, the contact probabilities of HCC cell lines and 
HMECs changed as the genomic distance passed 1 Mb (Fig. 1D 
and 1E). When the genomic distance was shorter than or equal to 
1 Mb, the contact probability was higher for HMECs than for 
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Fig. 1. Long-range interactions are increased in hepatocellular carcinoma (HCC) cell lines. (A) Genome-wide Hi-C contact maps representing 
trans-contacts between chromosomes at a 500 kb resolution, normalized by expected contact counts. (B) Contact maps depicting a log2-
fold change in contacts of HCC cell lines compared to those of human mammary epithelial cells (HMECs). (C) The percentages of cis-
contacts per chromosome in HCC cell lines and HMECs are shown (left). A bar plot of averaged cis-contact ratios across the whole genome, 
with the ratio of cis-contacts in HMECs presented as a dashed line (right). (D) Averaged contact probabilities according to the genomic 
distance are shown, with dashed lines representing points at which the contact probabilities of HMECs and HCC cell lines are the same 
(top). The derivatives of the contact probability are shown in the subpanel, and the regions of minimum and maximum points are marked 
with dashed lines (bottom). (E) Relative contact probability plots represent a log2-fold change in contact probability between HMECs and 
HCC cell lines according to the genomic distance. The dashed lines mark the points with no fold change. (F) A box plot of the ratios between 
short-range cis contacts (shorter than or equal to 1 Mb) and long-range cis contacts in HCC cell lines and HMECs. p-values were calculated 
using the Wilcoxon rank sum test (*p < 0.005, **p < 1.0e-4, ***p < 1.0e-5).
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HCC cell lines. As the genomic distance reached and then passed 
1 Mb, the contact probability of HMEC shrank until the distance 
reached 40 Mb. Based on this observation, we divided intrachro-
mosomal contacts into short- and long-range contacts based on a 
genomic distance of 1 Mb. The ratios between short vs. long-range 
interactions of HCC cell lines were significantly lower than those 
of HMECs, indicating that HCC cell lines had dominant long-
range interactions (Fig. 1F, Supplementary Fig. 1D). In conjunc-
tion with frequent interchromosomal contact, HCC cell lines also 
revealed intensified contacts in long-range intrachromosomal in-
teractions. 

From the derivative of the contact probability plot, we could 
further infer the size of TADs and the linear density of cohesin 
[36]. The average TAD sizes, determined from the maximum 
points in the derivative plots, were slightly increased in HCC cell 
lines (Fig. 1D subpanel). The cohesin linear density, which was 
determined by the depth of the minimum point, was decreased in 
HCC cell lines; this could be interpreted as indicating the presence 
of weaker intra-TAD interactions based on the previous study [36], 
which found stronger TADs and chromatin loops were associated 
with more robust insulation and a higher density of cohesins. In 
summary, in HCC cell lines, shorter contacts (e.g., intra-TAD in-
teractions) were decreased, and more elongated contacts (e.g., in-
terchromosomal contacts) were increased. This change might 
cause the abnormal cancer phenotype of HCC cell lines.  

Distinguishing compartment landscapes in HCC cell lines 
Having observed a discrepancy in genome-wide chromosome 
contact between HMECs and HCC cell lines, we next defined 
compartmental domains to explore potential relationships be-
tween contact differences and 3D chromatin organization. We also 
analyzed open chromatin regions via ATAC-seq using two techni-
cal replicates.  

We analyzed compartments through PCA analysis of Hi-C con-
tacts at a 100 kb resolution. Positive PC values were taken as defin-
ing A compartments, and negative values were taken as delimiting 
B compartments [37]. The PC1 values of HCC cell lines showed 
moderate positive correlations with those of HMECs (Fig. 2A). 
Based on these scores, we calculated the Pearson correlations for 
hierarchical clustering (Fig. 2B). Huh1 and SNU449 cells had the 
strongest correlation with one another. Moreover, Huh1 and 
SNU449 cells had the lowest correlation scores with Huh7. To 
compare these results to the correlation scores obtained from the 
ATAC peaks, we mapped the trimmed ATAC-seq fastq files onto 
the hg19 genome and merged the mapping results of the repli-
cates. After sorting and indexing, we calculated the Pearson cor-

relation scores at a 100 kb resolution. The ATAC-seq peaks 
showed close correlations between SNU449 and Huh1 cells, fol-
lowed by Huh7 and Hep3B cells, and thus supported the PCA 
analysis results (Fig. 2C). 

Regarding compartmentalization changes between HMECs and 
HCC cell lines, we found that almost 50% of the compartments in 
HMECs were altered (A-to-B or B-to-A; called changed compart-
ments or CCs) in HCC cell lines (Fig. 2D). Intriguingly, the CCs 
were unique in each HCC cell line. For example, some B-to-A do-
mains in Hep3B were not changed in the other HCC cell lines. Ac-
cordingly, we analyzed the CCs in each cell line. Surprisingly, each 
cell line had only 25% CCs compared to HMECs, compared to the 
50% difference between all HCC cell lines and HMECs (Fig. 2F). 
Thus, the CCs appeared to be distinctive to each HCC cell line. 

Next, we generated heatmaps that sorted bins according to the 
comparison between HMECs and each HCC cell line (Fig. 2E, 
Supplementary Fig. 2). The A-to-B domains of Hep3B cells were 
mostly consistent with those of the other HCC cell lines, whereas 
the B-to-A domains of Hep3B cells only marginally overlapped 
with those of other HCC cell lines. For instance, in chromosome 
13, there was a B-to-A domain in Hep3B cells that corresponded 
to a static B domain in the other HCC cell lines (Fig. 2G). Addi-
tionally, the PC values of most compartment B domains were low-
er in HCC cell lines than in HMECs. Unlike the compartment 
scores for compartment B, those for compartment A did not de-
crease by more than half in HCC cell lines compared to HMECs 
(Fig. 2E). 

To summarize, compartment alterations in HCC cell lines were 
mostly found in the B compartment of HMECs, which were weak-
ened or changed to A compartment regions in the HCC cell lines. 
Notably, these B-to-A domain changes were cell line-specific. Our 
results suggest that compartment analysis could potentially be 
used to classify the subtype of HCC, which is critical for selecting 
a cancer treatment strategy. 

Intra-TAD interactions are decreased in HCC cell lines 
Next, we explored shorter-range neighborhood interactions, 
namely TADs and chromatin loop interactions, in greater depth. 
Based on our initial results, we expected smaller TAD sizes and 
weaker intra-TAD interactions in HCC cell lines compared to 
HMECs. To analyze this in more detail, we defined TADs by RI 
analysis using CaTCH [18]. HMECs had more abundant (n = 
9,944) TADs than HCC cell lines (Hep3B = 8,473, Huh1 = 9,159, 
Huh7 = 7,693, SNU449 = 9,553). As we expected, according to 
ATA analysis, the intra-TAD interactions were diminished in HCC 
cell lines compared to HMECs (Fig. 3A). Subsequently, we calcu-
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Fig. 2. Distinguishing compartment landscapes in hepatocellular carcinoma (HCC) cell lines. (A) Scatter plots of the compartment scores 
(PC1) of HCC cell lines relative to human mammary epithelial cells (HMECs) at a 100 kb resolution. Linear regression lines and correlation 
coefficients (R2) are presented. (B) A heatmap showing Pearson correlations of PC1 correlation coefficients with hierarchical clustering. (C) 
A Pearson correlation heatmap generated from ATAC peaks with hierarchical clustering. (D) An accumulative column graph of the ratio of 
compartmental changes between HCC cell lines and HMECs (left). The genomic bins of CCs are depicted as a heatmap with hierarchical 
clustering (right). (E) Heatmaps of compartment scores in each cell type, sorted according to compartment alteration. The genomic bins 
were sorted by compartmental changes between HMECs and Hep3B cells (left) and between HMECs and Huh7 cells (right). (F) Accumulative 
column graphs of the percentages of different compartment transitions from HMECs to each HCC cell line. (G) Example of compartmental 
domains of HMECs and HCC cell lines. The example domains of cell line-specific CCs are marked with a dotted box.
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lated the insulation score, which provided an aggregate of interac-
tions within a sliding square across the interval [18]. The insula-
tion scores' local minima were considered to be the TAD boundar-
ies. The insulation scores for TAD interactions of HCC cell lines 
were also higher (less negative), i.e., had smaller signal amplitude 
than those of HMECs, implying that the insulating abilities at 
TAD borders were affected under HCC (Fig. 3B). Huh7 and 
SNU449 cells exhibited particularly smaller signal amplitude at 
TAD boundaries than Huh1 and Hep3B cells. Weaker TAD bor-
ders could explain why the inter-TAD interactions and TAD sizes 
were increased in HCC cell lines compared to HMECs (Fig. 3C). 
Hep3B and Huh7 cells had greater inter-TAD strength and longer 
average TAD lengths than Huh1 and SNU449 cells. 

Another critical interaction is the chromatin loop interaction. 
Chromatin loops are formed by the interaction between the pairs 
of loci that show significantly higher contact frequencies than their 
neighbors [11]. We defined loops via the HiCCUPS algorithm of 
juicer tools [20]. We detected 30,325 chromatin loops in HMECs 
and 21,646, 20,477, 14,280, and 15,056 chromatin loops in 
Hep3B, Huh7, Huh1, and SNU449 cells. Similar to the weaker 
TAD interactions, we observed that HCC cell lines had fewer and 
weaker chromatin loops than HMECs (Fig. 3D and 3E). The in-
tensity and number of chromatin loops in SNU449 and Huh1 
cells were significantly lower than in Hep3B and Huh7 cells. 

To prevent chromosomal rearrangement from affecting our re-
sult, we also analyzed TAD domains and chromatin loops after ex-
cluding CNVs from the genome (Supplementary Table 1, Supple-
mentary Fig. 1B–1F). The results were consistent with our previ-
ous results about the characteristics of TAD and chromatin loops 
of HCC cell lines compared to HMECs. 

We also examined the similarities between chromatin loop inter-
actions. Unexpectedly, only 4.4% of loop interactions were com-
mon to all four HCC cell lines and HMECs (Fig. 3F). Hep3B and 
Huh7 cells had the highest number of common peaks, followed by 
Huh1 and SNU449 cells. When we combined the results of all 
Hi-C analyses, including those of genome-wide contacts, compart-
ments, ATAC-seq peaks, and TAD characteristics, the HCC cell 
lines clearly segregated into two subgroups based on chromatin 3D 
organization: one group comprising SNU449 and Huh1 cells and 
one comprising Hep3B and Huh7 cells. This tendency was also ob-
served in the previous study, which identified six HCC subgroups 
through unsupervised transcriptome analysis [38]. 

Alteration of 3D chromatin organization can disturb gene 
expression 
Finally, we assessed the relationship between 3D chromatin orga-

nization and gene expression. We used the public total RNA-seq 
results for HMECs, Hep3B, Huh1, Huh7, and SNU449 cells and 
mapped them to the hg19 genome using STAR [25]. We applied 
Cufflinks to identify differentially expressed genes (DEGs) of five 
cell lines compared to each other [39] and used cummeRbund to 
plot the results of our analysis [27]. We calculated the correlation 
of DEGs in HCC cell lines and HMECs (Fig. 4A left panel). The 
DEGs of Hep3B and Huh7 cells had the strongest relationship 
with each other, while those of HMECs had the weakest relation-
ship with the DEGs of the HCC cell lines. This result was also de-
picted as a dendrogram (Fig. 4A right panel). There are three pub-
lished strategies for subtyping HCC based on transcriptome anal-
ysis, namely the subgroupings reported by Boyault et al. [38] (G1 
to G6, G-standard), Hoshida et al. [40] (S1 to S3, S-standard), 
and Caruso et al. [41] (CL1 to CL3, CL-standard). Based on 
G-standard, Huh1 and SNU449 are G3, Hep3B is G1, and Huh7 
is G2. Based on S-standard, Hep3B, Huh1, and Huh7 are S2 and 
SNU449 is S2. Finally, based on CL-standard, Hep3B, Huh1, and 
Huh7 are CL1 and SNU449 is CL3. When taking together all 
these previous studies, SNU449 has the least similarity with other 
HCC cell lines, and Hep3B and Huh7 tend to be the most similar 
in the transcriptome. In our RNA-seq analysis, Hep3B and Huh7 
had the highest correlation, and SNU449 had the lowest correla-
tion with other HCC cell lines. Since our RNA-seq analysis results 
were closely related to three previous subtypings, we could con-
clude that this public RNA-seq data and our analysis were suffi-
cient to support the observation of transcription level change. Im-
portantly, as described earlier, Hep3B and Huh7 cells demonstrat-
ed the highest correlation in 3D chromatin organization and RNA-
seq analysis, followed by Huh1 and SNU449 cells. This implies 
that 3D chromatin organization could also be another HCC sub-
typing standard. 

Our RNA-seq analysis revealed that Hi-C analysis results could 
potentially be used as subtyping standards and supported the con-
nection between 3D chromatin organization and gene expression 
level. Additionally, we found the expression level of SLC8A1 (en-
coding Solute Carrier Family 8 A1, chr2: 40,097,270-40,611,053) 
was lower in all tested HCC cell lines compared to HMECs (Fig. 
4B). Notably, the TAD domain at this locus was altered in HCC 
cell lines relative to HMECs (Fig. 4C). In HMECs, the boundaries 
of the TAD containing SLC8A1 were located at 40 Mb and 40.46 
Mb of chromosome 2. The two most highly ranked enhancers for 
SLC8A1 are GH02J040449 and GH02J040511, located at 
40,449,400 and 40,511,348 bp, respectively, and are thus found in 
the same TAD as SLC8A1 in HMECs. In HCC cell lines, however, 
the TAD of SLC8A1 was enlarged. We speculate that this altered 
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Fig. 3. Diminished intra-TAD (topologically associated domains) interactions in hepatocellular carcinoma (HCC) cell lines. (A) Aggregate 
TAD analysis (ATA) of the normalized contacts (top) and differential interactions (bottom) of HCC cell lines compared to human mammary 
epithelial cells (HMECs) in 9,944 HMEC TADs. (B) Averaged insulation scores at TAD boundaries of HMEC within ±1 Mb. Dashed lines mark 
the insulation scores of HMECs (black) and HCC cell lines at HMEC TAD boundaries. Calculated p-values with the Wilcoxon rank sum test 
are shown. (C) TAD n+1 plots (top) showing inter-TAD interactions with neighbor TADs of HCC cell lines compared to HMECs. The dashed 
line is located at zero. The box plot shows the TAD length distribution for each cell line (bottom). The medians of the TAD lengths are 
represented with white lines, and the median for HMECs is shown with a black dashed line. p-values were calculated using the Wilcoxon 
rank sum test (*p < 0.05, **p < 0.001, ***p < 1.0e-6). (D) Aggregate peak analysis of the normalized peaks (top) and differential peaks (bottom) 
of HCC cell lines compared to HMECs at 30,325 HMEC peaks within ±50 kb. (Continued to the next page)
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Fig. 3. (Continued from the previous page) (E) A box plot showing the distribution of pixel enrichments in ATA plots, with median values 
represented by white lines. p-values were calculated using the Wilcoxon rank sum test (***p < 2.2e-16). (F) Venn diagrams represent the 
similarity of peaks between HMECs and HCC cell lines.

EE FF

TAD might not be able to support proximity between the en-
hancers and the promoter of SLC8A1 and that the smaller TAD 
might be necessary for the proper expression of SLC8A1. 

Moreover, the chromatin loops annotated in the SLC8A1 TAD 
of HMECs were not detected in the HCC cell lines. These dis-
crepancies in 3D chromatin organization might form a basis for 
the differential expression of SLC8A1 in HCC cell lines. Further-
more, we found another gene, CHDR1 (encoding Cadherin relat-
ed family member 1, chr10:84,194,635–84,219,621), that expres-
sion level reduction and TAD disruption both occurred (Supple-
mentary Fig. 3). The low expression of CHDR1 is an unfavorable 
prognostic factor, and overexpression of CHDR1 could inhibit gli-
oma cell growth [42]. In Hep3B, Huh1, and Huh7, the TAD at the 
CHDR1 gene locus enlarged. In SNU449, CHDR1 TAD was sepa-
rated into two smaller TADs. Moreover, all HCC cell lines lost 
chromatin loop interaction at the CHDR1 locus. These disrup-
tions of TADs and chromatin loops might cause the suppression 
of gene expression. These examples support the idea that there is a 
relationship between gene expression and 3D chromatin organiza-
tion and further emphasize the importance of characterizing 3D 
chromatin organization in cancer. 

Discussion 

The study of epigenetics in HCC is essential for several reasons. 
Firstly, as epigenetic changes play a critical role in the development 
and progression of HCC [43], the study of such changes could 
critically help us understand the mechanisms underlying this dis-
ease. Secondly, targeting specific epigenetic changes could be a 

strategy for improving the diagnosis and prognosis of HCC [44]. 
Finally, knowledge of HCC epigenetics could facilitate the devel-
opment of new therapies and personalized medicine, such as 
epidrugs, by guiding researchers in leveraging relevant DNA meth-
ylation inhibitors, histone deacetylases, and other chromatin-mod-
ifying enzymes [45]. Therefore, the study of epigenetics in HCC 
has the potential to provide new insights into the nature of HCC 
and reduce the burden of this devastating disease worldwide. 

In situ Hi-C allowed us to characterize the 3D genome organiza-
tion of four HCC cell lines (Hep3B, Huh1, Huh7, and SNU449) 
compared to HMECs. The HCC cell lines were found to have the 
following changes relative to HMECs: a higher frequency of long-
range (>1 Mb) interactions, such as trans-interactions and intrach-
romosomal interactions; cell line-specific compartmental changes 
relative to HMECs; and reductions in the number and strength of 
TADs and chromatin loops. Using the correlation scores for all 3D 
chromatin structures, we could divide the four HCC cell lines into 
two subgroups: one comprising Hep3B and Huh7 cells and one 
comprising Huh1 and SNU449 cells. This subtyping was support-
ed by the results of our RNA-seq analysis. Finally, we revealed that 
the gene expression level and 3D chromatin organization are 
linked in the case of SLC8A1, which encodes a sodium-calcium 
antiporter that plays a crucial role in inducing apoptosis by increas-
ing the influx of calcium ions [46-48]. 

We previously studied 3D chromatin organization in different 
breast cancer cells and tissues [49]. Both breast cancer and HCC 
cell lines showed increases in trans-contacts and distant interac-
tions relative to those of HMECs’. The TAD insulation scores and 
peak strength at chromatin loops were decreased in cancer cells 
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Fig. 4. Changes in 3D chromatin organization can disturb gene expression. (A) A JS Distance correlation plot (left) and a dendrogram (right) 
of differentially expressed genes genes in hepatocellular carcinoma (HCC) cell lines and human mammary epithelial cells (HMECs). Three 
previous HCC subtyping strategies are indicated by colored boxes. (B) FPKM (fragments per kilobase of transcript per million) gene-level 
plot of SLC8A1 in HMECs and HCC cell lines. (C) Normalized Hi-C contact maps with TADs (topologically associated domains; green lines) 
indicated, spanning 34 to 41 Mb of chromosome 2 in the five cell lines. The white dashed lines mark the SLC8A1 locus, and the yellow 
dashed line marks the location of enhancers. (D) Normalized Hi-C contact maps indicating TADs (straight lines) and chromatin loops (dots) 
of HCC cell lines and HMECs. The TAD boundaries of each cell line and chromatin loops are marked with the following colors: HMEC, black; 
Hep3B, blue; Huh1, red; Huh7, green; and SNU449, yellow. The gray dots in the upper triangle mark the HMECs’ chromatin loops.

AA BB

DDCC

compared to HMECs. Reduced local contacts and increased glob-
al contacts may be common features of cancer cells. However, 
there were some differences between the two cancer types. In the 
breast cancer study, the BT549 cell line, which is a triple-negative 
breast cancer cell line, showed the most distinctive CCs from oth-
er breast cancer cells. In the present study, in contrast, the HCC 
cell lines all had similar A-to-B compartmental changes but cell 
line-specific B-to-A changes. This distinct B-to-A compartmental 
change may be a biomarker of HCC cell lines and could potential-

ly be used to classify HCC cell lines.  
Although we found some apparent cell line-specific 3D chroma-

tin organizations in HCC, our study has limitations. We used 
HMECs as a control; as these cells originated from mammary tis-
sue, our findings may not be cancer-specific features but rather liv-
er-specific. Furthermore, we do not report on other epigenetic 
data, such as histone ChIP-seq results; thus, the results of our Hi-C 
analysis must be confirmed by additional experiments. Neverthe-
less, we herein reported distinguishing features of chromatin orga-
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nization between HCC cell lines and showed that their contact 
characteristics coincided with those of the previously studied 
breast cancer cell lines. Finally, the utilized Hi-C analysis pipeline 
was one that had been previously verified by many studies; thus, 
our findings should be meaningful in a general sense. 

Our results provide new epigenetic perspectives into HCC pa-
thology and cancer biology that can be further explored through fu-
ture research. There is a long-standing debate over whether cancer 
cell lines demonstrate phenotypes identical to cancer cells obtained 
from tissues [50], and studies have shown that a given cell line can 
display varying characteristics depending on the culture environ-
ment [51]. As a result, researchers are making significant efforts to 
build in vitro microenvironments for cancer cells, such as with 3D 
culture techniques [52]. As an extension of our research, by compar-
ing the monolayer-cultured cancer cell lines, 3D-cultured cancer cell 
lines, and cancer cells from patients’ tissue samples, we will be able 
to distinguish three distinct epigenetic phenotypes. Moreover, we 
will identify the universal features of cancer cells compared to nor-
mal cells and determine which epigenetic markers can be used to 
discriminate cancer cell lines from tissues and normal cells. These 
findings can serve as a foundation for further research in cancer epi-
genetics and epigenetic drug development. 
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