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Introduction 

Kidney renal clear cell carcinoma (KIRC) or clear cell renal cell carcinoma is the most 
common histological type of kidney cancer, accounting for 70% of all cases [1]. Accord-
ing to global cancer statistics, there were 431,288 new cases and 179,368 new deaths for 
kidney cancer worldwide in 2020 [2]. Although localized KIRC can be cured by surgical 
treatment, patients frequently present with metastasis at diagnosis or develop recurrence 
after treatment, resulting in high mortality rate and limited therapeutic options [3,4]. 
Therefore, the identification of biomarkers is beneficial to improve diagnosis and prog-
nosis for KIRC patients. 

Bioinformatic analyses reveal the 
prognostic significance and potential 
role of ankyrin 3 (ANK3) in kidney 
renal clear cell carcinoma
Keerakarn Somsuan1,2, Siripat Aluksanasuwan1,2*
1School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
2Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, 
Thailand

Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the 
urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic op-
tions. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining 
physiological function of the kidney and its alteration is implicated in many cancers. In this 
study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and 
HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OS-
kirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal data-
base. Interaction network and functional enrichment analyses of ANK3-correlated genes in 
KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 
database was used to assess correlation between ANK3 expression and immune infiltration 
in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to 
normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes 
than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC pa-
tients and were frequently co-mutated with several genes with a prognostic significance. 
ANK3-correlated genes were significantly enriched in various biological processes, mainly 
involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which 
positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expres-
sion of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T 
cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a 
prognostic biomarker and promising therapeutic target for KIRC. 
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Ankyrin 3 (ANK3), also known as ankyrin G, belongs to ankyrin 
protein family. It is a scaffold protein that regulates the organization 
of membrane and cytoskeletal components [5]. ANK3 is the most 
abundant ankyrin in kidney [6] and plays a crucial role in mem-
brane assembly, epithelial cell polarization, and regulation of ion 
channels [7-9]. In cancers, genetic and expression alterations of 
ANK3 have been reported in several studies [10-16]. Decreased 
ANK3 expression was associated with poor survival outcome in 
prostate cancer [14] and androgen receptor-positive breast cancer 
[15]. It has been shown that ANK3 regulates cell cycle and inhibits 
cell invasion in prostate cancer cells [14]. Overexpression of ANK3 
promotes cell apoptosis and suppresses epithelial-mesenchymal 
transition in papillary thyroid carcinoma cells [16]. These findings 
indicate the prognostic value and tumor suppressive function of 
ANK3 in cancers. Nevertheless, its prognostic significance and role 
in KIRC remain largely unknown. 

In the present study, we performed an integrative bioinformatic 
analysis of molecular and clinical data from the publicly available 
datasets through various online databases. The expression of ANK3 
and its relationship to clinicopathologic outcomes in KIRC were 
explored in Gene Expression Profiling Interactive Analysis 2 (GE-
PIA2), University of ALabama at Birmingham CANcer data analy-
sis portal (UALCAN), and Human Protein Atlas (HPA) databases. 
Prognostic significance of ANK3 for KIRC was assessed by GE-
PIA2, Kaplan-Meier (KM) plotter, Online consensus Survival anal-
ysis for KIRC (OSkirc), and Tumor Immune Estimation Resource 
(TIMER) databases. ANK3 mutations and co-mutations in KIRC 
were analyzed by the cBioPortal database. Potential roles of ANK3 
in KIRC carcinogenesis and immune infiltration were also investi-
gated using GeneMANIA, Shiny GO, and TIMER2.0 databases. 

Methods 

Differential expression analysis 
Differential expression of ANK3 in KIRC compared to normal tis-
sues was explored using GEPIA2 database (http://gepia2.can-
cer-pku.cn/) [17] and the UALCAN database (http://ualcan.
path.uab.edu) [18]. The mRNA expression of ANK3 was analyzed 
in KIRC (n = 533) and normal (n = 72) tissue samples in The 
Cancer Genome Atlas (TCGA) dataset using GEPIA2. The dif-
ferential expression of ANK3 protein in KIRC (n = 110) and nor-
mal (n = 84) tissue samples was examined in the Clinical Proteom-
ic Tumor Analysis Consortium (CPTAC) dataset using UAL-
CAN. In addition, the protein expression levels of ANK3 in renal 
cancer and normal kidney tissues were explored in the HPA data-
base (http://www.proteinatlas.org) [19,20]. 

Analysis of the association of ANK3 expression and 
clinicopathological features of KIRC patients 
Relationships between ANK3 mRNA expression and clinicopath-
ological features, including age, race, sex, cancer stage, tumor 
grade, and nodal metastasis status in KIRC patients were analyzed 
in the TCGA dataset using the UALCAN database. 

Survival analysis 
Survival analysis of ANK3 expression in KIRC patients was per-
formed using various databases, including GEPIA2, KM plotter 
(https://kmplot.com/analysis/) [21], OSKirc (https://bioinfo.
henu.edu.cn/KIRC/KIRCList.jsp) [22]. In GEPIA2, patients 
(n=516) were split into low- and high-expression groups based on 
median expression value. Survival analysis by KM plotter was con-
ducted for 530 KIRC patients. Low- and high-ANK3 expression 
groups were divided using “Auto select best cut-off ” option. For 
OSkirc, a total of 629 KIRC patients from combined data sources 
(TCGA, GSE22541, GSE29609, and GSE3) were subjected to 
survival analysis with the patients split by “upper 50%” option. The 
KM curves of overall survival of KIRC patients were plotted along 
with the log-rank p-value and hazard ratio (HR). Multivariable Cox 
proportional hazard regression analysis to assess an independent 
predictive value of ANK3 expression was performed using the 
TIMER database (https://cistrome.shinyapps.io/timer/) [23,24].  

Genetic alteration analysis  
Genetic alterations of ANK3 were explored using cBioPortal for 
Cancer Genomics database (https://www.cbioportal.org/) 
[25,26]. The ANK3 mutations and co-mutations in KIRC were an-
alyzed in 1,496 samples in TCGA datasets (TCGA, Firehose Lega-
cy; TCGA, Nature 2013; TCGA, PanCancer Atlas). Heatmap rep-
resenting HR and the KM curve of ANK3 co-mutated gene expres-
sion for overall survival of KIRC patients were created by GEPIA2. 

Interaction network and functional enrichment analyses of 
ANK3-correlated genes 
The top 50 genes that were positively correlated with ANK3 in 
KIRC based on Pearson correlation coefficient, were retrieved 
from GEPIA2 and subjected to further analyses. Interaction net-
works of ANK3-correlated genes were constructed using Gene-
MANIA (https://genemania.org/) [27]. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses were performed and graphically visual-
ized using ShinyGO (version 0.76.3) (http://bioinformatics.sd-
state.edu/go/) [28]. The significance threshold for the enrich-
ment was set at the false discovery rate ≤ 0.05. 
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Analysis of relationship between ANK3 and peroxisome 
proliferator-activated receptors in KIRC 
Correlations of ANK3 expression and peroxisome proliferator-ac-
tivated receptors (PPARs), including PPARα (PPARA), PPARβ/δ 
(PPARD), and PPARγ (PPARG) expression in KIRC were ana-
lyzed in 516 samples using GEPIA2. KM curves of PPARA, 
PPARD, and PPRRG expressions for overall survival of KIRC pa-
tients were generated by GEPIA2. The protein expression levels of 
PPARA and PPARG in renal cancer and normal kidney tissues 
were explored in the HPA database. 

Immune infiltration analysis 
Correlation between ANK3 expression and abundance of tu-
mor-infiltrating immune cells, including B cells, CD8+ T cells, 
CD4+ T cells, neutrophils, macrophages, and dendritic cells in 
KIRC was estimated by TIMER, TIDE, CIBERSORT, CIBER-
SORT-ABS, QUANTISEQ, XCELL, MCPCOUNTER, and EPIC 
algorithms through TIMER 2.0 database (http://timer.cistrome.
org/) [29] with tumor purity adjustment. A heatmap representing 
the partial Spearman's correlation coefficient was plotted using 
GraphPad Prism version 8.0.1 (GraphPad Software, San Diego, 
CA, USA). Scatter plots of ANK3 expression level and infiltration 
level of immune cells were visualized by the TIMER2.0 database. 

Statistical analysis 
Differential expression analysis of ANK3 was performed using 
one-way ANOVA in the GEPIA database and Student's t-test in 
the UALCAN database. Survival analysis was performed with the 
Kaplan-Meier method and log-rank test. Multivariate analysis was 
conducted by Cox’s proportional hazard model. Genetic alter-
ations were analyzed by one-sided Fisher’s exact test in the cBio-
portal database. Pearson’s correlation analysis was used to evaluate 
the correlation between two genes expression. Correlation be-
tween ANK3 expression and immune infiltration level was evalu-
ated by the purity-adjusted partial Spearman’s correlation test. The 
p-value less than 0.05 was considered statistically significant. 

Results 

Differential expression of ANK3 in KIRC and normal 
tissues 
Differential expressions of ANK3 in KIRC compared to normal 
tissue at mRNA and protein levels were investigated using GE-
PIA2 and UALCAN, respectively. GEPIA2 analysis showed that 
ANK3 mRNA expression was significantly down-regulated in 
KIRC compared to normal tissues in the TCGA dataset (Fig. 1A). 

Similarly, a significant decrease of ANK3 protein expression in 
KIRC was observed from CPTAC dataset in UALCAN (Fig. 1B). 
Moreover, result from HPA database also demonstrated a decrease 
of ANK3 protein level in renal cancer compared to normal kidney 
tissues (Fig. 1C). These findings indicated that ANK3 expression 
was significantly decreased in KIRC compared to normal tissues at 
both mRNA and protein levels. 

Association between ANK3 expression and clinicopathological 
features of KIRC patients 
We assessed the associations between ANK3 mRNA expression 
and clinicopathological features of KIRC patients using UALCAN. 
Based on the TCGA dataset, ANK3 expression was not signifi-
cantly associated with patient’s age and race (Fig. 2A and 2B). 
Male patients had a significantly lower level of ANK3 expression 
compared to female patients (Fig. 2C). In addition, the data 
showed that ANK3 expression was significantly correlated with 
cancer stage (Fig. 2D), tumor grade (Fig. 2E), and nodal metasta-
sis status (Fig. 2F). These findings suggested that the decreased 
expression of ANK3 may be a predictive indicator for KIRC sever-
ity and progression. 

Prognostic impact of ANK3 expression in KIRC 
We analyzed an association between ANK3 expression and overall 
survival of KIRC patients with low- and high-ANK3 expression 
using GEPIA2, KM plotter, and OSkirc databases. The data from 
GEPIA2 showed that KIRC patients with low ANK3 expression 
had significantly shorter overall survival than those with high 
ANK3 expression (Fig. 3A). Significant associations of ANK3 ex-
pression with overall survival of KIRC patients were consistently 
observed in KM plotter (Fig. 3B) and OSkirc (Fig. 3C) databases. 
In order to assess an independent predictive value of ANK3 ex-
pression, multivariate analysis was performed using the TIMER 
database. The analysis results confirmed that ANK3 expression 
was an independent prognostic factor for KIRC (Table 1). Thus, 
the low ANK3 expression could indicate poor prognosis in KIRC 
patients. 

Genetic alteration of ANK3 in KIRC 
Genetic alteration of ANK3 in KIRC patients was analyzed using 
cBioPortal. Based on TCGA datasets, ANK3 mutations were 
found in about 2.4% (36 of 1495 cases) of KIRC patients (Fig. 
4A). There were 36 mutations distributed across the gene, in 
which missense mutations were the most frequent (28 of 36), fol-
lowed by truncating (7 of 36) and splicing (1 of 36) mutations 
(Fig. 4B). In order to gain more insights into the underlying mo-
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Fig. 1. Expression of ANK3 mRNA and protein in KIRC tissues. (A) Boxplot of ANK3 mRNA expression in KIRC (red) and normal (grey) 
tissues from The Cancer Genome Atlas dataset (GEPIA2 database). (B) Boxplot of ANK3 protein expression in KIRC (red) and normal (blue) 
tissues from the CPTAC dataset (UALCAN database). (C) Representative immunohistochemical image of ANK3 protein expression in normal 
kidney and renal cancer tissues (HPA database). ANK3, ankyrin 3; KIRC, kidney renal clear cell carcinoma; GEPIA2, Gene Expression Profiling 
Interactive Analysis 2; CPTAC, Clinical Proteomic Tumor Analysis Consortium; UALCAN, University of ALabama at Birmingham CANcer data 
analysis portal; HPA, Human Protein Atlas; RCC, renal cell carcinoma; TPM, transcripts per million. *p < 0.05, **p < 0.01.
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Fig. 2. Relationship between ANK3 mRNA expression and clinicopathological features in KIRC. Boxplot of ANK3 mRNA expression in KIRC 
based on patient’s age (A), patient’s race (B), patient’s sex (C), individual cancer stage (D), tumor grade (E), and nodal metastasis status (F) 
from The Cancer Genome Atlas dataset (UALCAN database). ANK3, ankyrin 3; KIRC, kidney renal clear cell carcinoma; UALCAN, University of 
ALabama at Birmingham CANcer data analysis portal; TCGA, The Cancer Genome Atlas. *p < 0.05, **p < 0.01.
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Fig. 3. Relationship between ANK3 mRNA expression and survival outcomes of KIRC patients. KM curves for overall survival in KIRC patients 
with low- and high-ANK3 expression obtained from GEPIA2 (A), KM plotter (B), and OSkirc (C) databases. ANK3, ankyrin 3; KIRC, kidney 
renal clear cell carcinoma; KM, Kaplan-Meier; GEPIA2, Gene Expression Profiling Interactive Analysis 2; OSkirc, Online consensus Survival 
analysis for KIRC; HR, hazard ratio; CI, confidence interval.
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lecular mechanisms of cancer development, we further analyzed 
co-mutation pattern of ANK3 in KIRC. Genetic alterations of 124 
genes were significantly identified in KIRC patients with ANK3 
mutations (Fig. 4C, Supplementary Table 1). Top 10 genes with 
the most significantly co-mutated with ANK3 were MCRS1 (mi-
crospherule protein 1), SDAD1 (SDA1 domain containing 1), 
TTN (titin), NFAT5 (nuclear factor of activated T cells 5), PCLO 
(piccolo presynaptic cytomatrix protein), AJUBA (Ajuba LIM 
protein), NFASC (neurofascin), MSH6 (MutS homolog 6), 
HOXA9 (homeobox A9), and SLC7A6 (solute carrier family 7 
member 6) (Fig. 4D). Among these genes, SDAD1, NFAT5, 
PCLO, AJUBA, and MSH6 had a significant prognostic impact on 
overall survival for KIRC (Fig. 4E and 4F). These data suggested 
that mutations of ANK3 and its co-mutated genes may involve 
cancer development and predict a high risk of poor prognosis in 
KIRC patients. 

Interaction network, prognostic impact, and functional 
enrichment of ANK3-correlated genes in KIRC 
In this study, we obtained the top 50 genes with the highest cor-
relation with ANK3 in KIRC dataset from GEPIA2 for further 
analyses to define the possible roles of ANK3 in KIRC develop-
ment and progression. A list of these genes is provided in Supple-
mentary Table 2. The interaction network of ANK3-correlated 
genes was analyzed using GeneMANIA. As shown in Fig. 5A, 
these correlated genes closely interacted with each other in the 
network. The interactions among these genes were co-expression 
(91.98%), co-localization (3.53%), predicted (2.09%), physical 
interactions (1.85%), shared protein domains (0.3%), and genetic 
interactions (0.25%). Many of the genes in the network were sig-
nificantly involved in several biological functions related to fatty 
acid and lipid metabolisms. Survival analysis using GEPIA2 re-

vealed that most ANK3-correlated genes (49 of 50 genes) had a 
significant prognostic impact on overall survival for KIRC (Fig. 
5B). In addition, functional enrichment analysis was also per-
formed using ShinyGO. The data showed that these correlated 
genes were mainly enriched in GO biological process terms, such 
as “fatty acid beta-oxidation”, “carboxylic acid catabolic process”, 
and “fatty acid catabolic process” (Fig. 6A). The significantly en-
riched GO cellular component terms were predominantly in-
volved with “peroxisome” and “microbody” (Fig. 6B). There was 
no significant enrichment of GO molecular function term in these 
correlated genes. For KEGG pathway enrichment analysis, 
ANK3-correlated genes were significantly enriched in several path-
ways, mainly including “PPAR signaling pathway”, “fatty acid deg-
radation”, and “valine, leucine and isoleucine degradation” (Fig. 
6C). These enriched pathways were closely connected with each 
other (Fig. 6D). Taken together, these findings suggested that 
ANK3 and its correlated genes may play a role in KIRC through 
PPAR signaling pathways and lipid metabolism. 

Relationship between ANK3 and PPAR genes in KIRC 
In order to explore a relationship between ANK3 and PPAR sig-
naling pathway in KIRC, we employed GEPIA2 to analyze the 
correlation between ANK3 expression and three subfamilies of 
PPARs, including PPARA, PPARD, and PPARG in KIRC [30]. As 
shown in Fig. 7A, ANK3 expression was significantly positively 
correlated with PPARA and PPARG expressions, but not correlat-
ed with PPARD expression in KIRC. Furthermore, survival analy-
sis using GEPIA2 showed that KIRC patients with low expressions 
of PPARA and PPARG had significantly shorter overall survival 
compared to high-expression groups. There was no significant as-
sociation between PPARD expression and overall survival in KIRC 
patients (Fig. 7B). The results from the HPA database confirmed a 
decrease of PPARA and PPARG protein in renal cancer compared 
to normal kidney tissues (Fig. 7C). These results demonstrated a 
possible relationship of ANK3 to PPARα and PPARγ signaling 
pathways in KIRC pathogenesis and prognosis. 

Correlation between ANK3 expression and immune cell 
infiltration in KIRC 
Because PPAR signaling pathway does not only involve energy ho-
meostasis, but also plays a crucial role in regulating immune func-
tion and response in cancers [31,32]. Therefore, we further inves-
tigated the correlation between ANK3 and immune cell infiltration 
in KIRC using TIMER2.0. As shown in Fig. 8, ANK3 expression 
was consistently and significantly correlated with B cells, macro-
phages, neutrophils, and CD8+ T cells in KIRC. These findings 

Table 1. Multivariable Cox proportional hazard regression analysis of 
factors affecting overall survival of KIRC patients (TIMER database)

Variable HR (95% CI) p-value
Age 1.029 (1.015–1.044) <0.001
Sex (male) 0.837 (0.607–1.154) 0.278
Race (Black) 2.235 (0.282–17.736) 0.447
Race (White) 2.142 (0.293–15.664) 0.453
Stage2 1.203 (0.644 -2.247) 0.562
Stage3 2.172 (1.427–3.305) <0.001
Stage4 6.257 (4.237–9.238) <0.001
ANK3 expression 0.739 (0.669–0.816) <0.001

KIRC, kidney renal clear cell carcinoma; TIMER, Tumor Immune Estimation 
Resource; HR, hazard ratio; CI, confidence interval; ANK3, ankyrin 3.
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Fig. 4. ANK3 mutations and co-mutations in KIRC. (A) Genetic alteration frequency of ANK3 in KIRC patients (cBioportal database). (B) 
Distribution of mutations along the ANK3 gene in KIRC (cBioportal database). (C) Volcano plot of mutated genes in KIRC patients with and 
without ANK3 alterations (cBioportal database). (D) Bar graph representing the alteration frequency of the top 10 genes with the most 
significantly co-mutated with ANK3 in KIRC patients (cBioportal database). (E) Heatmap representing HR of each ANK3 co-mutated gene 
for overall survival of KIRC patients (GEPIA2 database). (F) KM curves of ANK3 co-mutated genes with a significant prognostic impact on 
overall survival for KIRC (GEPIA2 database). ANK3, ankyrin 3; KIRC, kidney renal clear cell carcinoma; GEPIA2, Gene Expression Profiling 
Interactive Analysis 2; KM, Kaplan-Meier; HR, hazard ratio.
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Fig. 5. Interaction network and prognostic impact of ANK3-correlated genes in KIRC. (A) Interaction network of the top 50 genes with the 
highest correlation with ANK3 in KIRC (GeneMANIA database). (B) Heatmap representing HR of each ANK3-correlated gene for overall 
survival of KIRC patients (GEPIA2 database). ANK3, ankyrin 3; KIRC, kidney renal clear cell carcinoma; HR, hazard ratio; GEPIA2, Gene 
Expression Profiling Interactive Analysis 2.

suggested that ANK3 expression was associated with abundance 
of tumor-infiltrating immune cells in KIRC tissue. The ANK3 ex-
pression may be related to anti-tumor immunity and therapeutic 
responses in KIRC. 

Discussion 

ANK3 is the major form of ankyrin which is widely expressed in all 
nephron segments of the kidney [6,33]. It plays an important role 
in maintaining structural and physiological integrities of the kid-
ney [7-9]. Recently, several studies have demonstrated that ANK3 
expression is positively associated with patient’s prognosis and ex-
erts a tumor-suppressive function in many cancers [14-16]. There-
fore, ANK3 is an interesting target for further investigations on its 

prognostic value and role in KIRC. 
In this study, our data analyses demonstrated that ANK3 mRNA 

and protein expression levels were significantly decreased in KIRC 
compared to normal tissues. Decreased ANK3 expression was posi-
tively correlated with disease stage and progression. The patients 
with low ANK3 expression had poor survival outcomes. These 
findings indicated that ANK3 expression had a favorable prognostic 
impact on KIRC. Our results are in line with previous studies in 
other types of cancer, including prostate and breast cancers [14,15], 
where low ANK3 expression was associated with poor survival out-
comes. Therefore, ANK3 expression could serve as a predictive in-
dicator for progression and prognosis in KIRC patients. 

A number of genetic alterations have been described in KIRC. 
The von Hippel–Lindau (VHL) mutation is considered as an initi-
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Fig. 6. Functional enrichment of ANK3-correlated genes in KIRC. Bar graphs representing significantly enriched GO biological process terms 
(A) and GO cellular component terms (B) of ANK3-correlated genes in KIRC (ShinyGO database). (C, D) Dot plot and network of significantly 
enriched Kyoto Encyclopedia of Genes and Genomes pathway of ANK3-correlated genes in KIRC (ShinyGO database). ANK3, ankyrin 3; KIRC, 
kidney renal clear cell carcinoma; GO, gene ontology; FDR, false discovery rate.
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ating factor for KIRC development [3]. Mutations in several 
genes, including polybromo 1 (PBRM1), SET domain containing 
2 (SETD2), and BRCA-associated protein 1 (BAP1), are frequent-
ly identified and closely associated with the prognosis of KIRC 
[34]. To our knowledge, ANK3 mutation and its functional impact 
on KIRC have not been previously reported. In this study, muta-
tions were distributed throughout the ANK3 gene. Among these, 
missense and frameshift mutations were found in ZU5 domain. It 
has been shown that the ZU5 domain of ANK3 serves as a binding 
site for β-spectrin to organize membrane components [35] and 
also plays a role in regulation of apoptosis [35,36]. These findings 
implied that ANK3 mutations may affect its function in kidney ho-
meostasis and carcinogenesis. ANK3 mutations were found in 
only a small number of KIRC patients (2.4%), suggesting that 
such mutations might not directly influence ANK3 expression lev-
el. Thus, epigenetic mechanisms could play a role in regulation of 

ANK3 expression in KIRC and merit further studies. Because 
ANK3 mutations occur at a very low frequency in KIRC patients, 
they may not have a direct association with prognosis. However, 
patients with ANK3 mutations frequently carry additional muta-
tions in several genes with strong favorable prognostic impact on 
overall survival for KIRC. Among these ANK3-comutated genes, 
mutations and loss of expression of MSH6 have been reported and 
thought to be related to KIRC development [37,38]. In addition, 
MSH6 has been identified as a predisposition gene in early-onset 
colorectal cancer and sporadic triple-negative breast cancer 
[39,40]. On the basis of these findings, it was suggested that muta-
tions of ANK3 and its co-mutated genes might involve cancer de-
velopment and predict a high risk of a poor prognosis. However, 
further investigations are needed to confirm their clinical relevance 
in KIRC patients. 

Previous studies have demonstrated that ANK3 regulates vari-
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Fig. 7. Correlation of PPAR expression with ANK3 expression and patient’s overall survival in KIRC. (A) Scatter plots representing correlation 
of ANK3 expression with PPARA, PPARD, and PPARG expressions in KIRC (GEPIA2 database). (B) KM curves for overall survival in KIRC 
patients with low- and high-expression of PPARA, PPARD, and PPARG (GEPIA2 database). (C) Representative immunohistochemical image 
of PPARA and PPARG protein expressions in normal kidney and renal cancer tissues (Human Protein Atlas database). PPAR, peroxisome 
proliferator-activated receptor; ANK3, ankyrin 3; KIRC, kidney renal clear cell carcinoma; GEPIA2, Gene Expression Profiling Interactive 
Analysis 2; KM, Kaplan-Meier; TPM, transcripts per million; HR, hazard ratio.
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Fig. 8. Correlation between ANK3 expression and immune cell infiltration level in KIRC. (A) A heatmap representing the partial Spearman's 
correlation coefficient for correlation of ANK3 expression with infiltration level of immune cells, estimated by different algorithms in the 
TIMER2.0 database with tumor purity adjustment. (B) Scatter plots representing significant correlation of ANK3 expression and infiltration 
level of immune cells (TIMER2.0 database). ANK3, ankyrin 3; KIRC, kidney renal clear cell carcinoma; TIMER, Tumor Immune Estimation 
Resource; TPM, transcripts per million.
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ous cellular processes in cancer cells, including cell cycle, apopto-
sis, and invasion [14-16]. Its tumor suppressive mechanisms are 
related to modulation of androgen receptor signaling pathway 
[14,15] and suppression of epithelial-mesenchymal transition pro-
cess [16]. However, the precise role of ANK3 and its mechanisms 
in KIRC carcinogenesis remains largely unknown. In this study, 
functional enrichment analyses of ANK3-correlated genes revealed 
potential involvement of ANK3 in PPAR signaling pathways and 
lipid metabolism in KIRC. PPARs are nuclear receptor transcrip-
tion factors which are classified into three main subfamilies: PPA-
RA, PPARD, and PPARG. They play a major role in regulation of 
lipid metabolism and energy homeostasis [30]. Several lines of ev-
idence have indicated that PPARs have a strong implication in 
cancers and have been recognized as promising therapeutic targets 
[31]. PPARα and PPARγ are widely considered to exert tumor 
suppressive function, whereas PPARβ/δ seems to play oncogenic 
role in many types of cancers [31]. In KIRC, PPARα and PPARγ 
have been shown to regulate tumor growth and metastasis via 
modulations of lipid and other metabolic pathways [41-44]; but 
there was no study reporting the role PPARβ/δ in this cancer. In 
concordance with these findings, our analyses revealed that ANK3 
expression was positively correlated with PPARA and PPARG, but 
not PPARD expression in KIRC. Low expressions of PPARA and 
PPARG were associated with poor prognosis in the patients. De-
creased protein levels of PPARα and PPARγ were also confirmed 
in renal cancer tissue. Taken together, our results implied that 
PPARα and PPARγ play a more prominent role than PPARβ/δ in 
carcinogenesis and prognosis of KIRC. A previous study has re-
ported that C-terminal region of ANK3 protein binds to sterol 
regulatory element-binding protein (SREBP), which is a transcrip-
tional factor involved in regulation of fatty acid metabolism [45]. 
SREBP can activate PPARγ through stimulating the production of 
its endogenous ligand [46]. These findings suggested that ANK3 
might exert its tumor suppressive role in KIRC through modula-
tion of PPARα and PPARγ pathways. 

Emerging evidence indicates that PPARs play a crucial role in 
regulation of immune cell function and response [32]. Cancer 
progression, prognosis, and treatment outcomes of the patient 
with KIRC are strongly influenced by immune cells in tumor mi-
croenvironment [47-52]. Therefore, it was hypothesized that 
ANK3 expression might be related to tumor-infiltrating immune 
cells in KIRC. In our study, we found a significant correlation be-
tween ANK3 expression and infiltration level of various immune 
cells, including B cell, macrophage, neutrophils, and CD8+ T cell. 
However, there was a weak to moderate correlation observed from 
our analysis. Therefore, further experimental validations should be 

conducted to confirm the potential of ANK3 as an indicator for 
immune infiltrate and response in KIRC. 

To our knowledge, our study is the first to show the potential 
role of ANK3 in prognosis and its possible relationships with 
PPARα/PPARγ signaling pathway and immune infiltration in 
KIRC. However, there are several limitations to this study that 
should be considered. First, we conducted bioinformatics analysis 
with a limited number of publicly available datasets. Although 
TCGA is a large and comprehensive dataset, it may not fully repre-
sent all KIRC patients. Future perspective and more independent 
cohort studies would help to confirm the prognostic significance 
of ANK3 in KIRC. Second, further in vitro/in vivo experiments are 
needed to address the oncogenic role of ANK3 and its mecha-
nisms involved in regulating PPARα/PPARγ signaling pathways in 
KIRC. Finally, clinical relevance and underlying mechanism of 
ANK3 in modulating immune response in KIRC requires further 
investigations. 

In conclusion, our findings demonstrated the prognostic signifi-
cance of ANK3 and its potential involvement with PPARα/ 
PPARγ signaling pathway and immune cell infiltration in KIRC. 
ANK3 could serve as a prognostic biomarker and promising thera-
peutic target for KIRC. 
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