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Introduction 

Cancer of the stomach is the fifth-frequent carcinoma [1] and the second leading cause 
of malignancy related deaths worldwide [2-5], with approximately one million new cases 
each year, which contributes to being a major global health problem. Previous studies 
have found that gastric cancer (GC) is a heterogeneous disease in which the genetic and 
epigenetic alterations of vital human genes associated with the cell cycle and DNA repair 
procedures and environmental factors mediate the occurrence and progression of the dis-
ease [6-9]. 
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It has been demonstrated that bacterial pathogens in the human 
stomach are involved in GC development. The primary human 
gastric pathogen, Helicobacter pylori, has infected more than 50% 
of the human population. Approximately 5%–15% of H. pylori–
positive patients reveal gastric disorders ranging from gastritis and 
metaplasia to gastric carcinoma [10]. H. pylori is the leading risk 
factor for developing GC [11-14] and has been detected in most 
patients with stomach cancer [11]. The infection of the gastric 
mucosa caused by H. pylori may result in constant inflammation in 
gastric tissue by promoting the expression of different cytokines 
(e.g., interleukin 1 beta,  interleukin-1 receptor antagonist, and tu-
mor necrosis factor-α), which can lead to enhanced levels of reac-
tive oxygen species, DNA damage, and hyper-activation of tumori-
genesis signaling pathways associated with cancer [12-20]. 

Despite the recent progress of new diagnostic and therapeutic 
approaches in GC, the mean survival times for advanced stages is 
not favorable. Due to early diagnosis, the survival rate is approxi-
mately 5%–20% in Western countries and 50% in Japan [3,21-24]. 
In addition, the exact molecular etiology of the disease has not been 
fully illustrated. By identifying the tumor suppressor genes that are 
usually down-expressed due to deletion or mutation, as well as dis-
covering the tumor promoter genes associated with gastric carcino-
ma, the underlying mechanisms of the disease could further be elu-
cidated, and more knowledge would be provided in the diagnostic, 
prognostic, and therapeutic procedures of GC [23-33]. 

Cancer biomarkers are differentially expressed molecules in pa-
tients with cancer compared to healthy individuals. Some bio-
markers are the main reason for abnormal cellular and molecular 
changes leading to malignancy, and others are secreted in response 
to the disease. The prognostic markers are used to predict the situ-
ation of patients in the future, independent of the treatment ob-
tained and may be used for predicting personalized medicine. In 
addition, the overall survival rate of patients and cancer recurrence 
could be expected by identifying prognostic biomarkers [34-36]. 
During the last decades, several of these markers have been intro-
duced by cancer researchers [37-41]. Therefore, physicians are en-
couraged to use validated biomarkers for personalized medicine as 
adjuvant treatment [34]. 

The small non-coding RNAs contributing to the gene regulato-
ry process at the post-transcriptional stage are named microRNAs 
(miRNAs). They bind to their specific complementary nucleo-
tides at different regions of the genes [42-48]. Previous studies 
have demonstrated that miRNAs could either promote or dimin-
ish the expression of genes [49,50]. In this regard, miRNAs could 
enhance their target genes' expression if they bind to the promoter 
region. However, these small molecules could result in gene silenc-

ing if they attach to other parts of the genes, such as 3′ untranslated 
region (UTR), 5′ UTR, and the coding sequence [50,51]. MiR-
NAs contribute to gene regulation and play a decisive role in several 
biological procedures, such as cellular proliferation and differentia-
tion, apoptosis, development, inflammation, carcinogenesis, and 
metastasis. The abnormal expression of miRNAs in tissues may re-
sult in tumorigenesis or vice versa [52]. Therefore, miRNAs have 
become encouraging molecules in biomarker discovery in cancer 
research [53-55]. The most significant miRNAs associated with 
the initiation, progression, and prognosis of GC could be deter-
mined by analyzing their expression in gastric normal and tumor 
tissues [56]. 

Microarray is high-throughput technology suitable for simulta-
neously analyzing thousands of gene expression patterns [57]. A 
large number of variables with a small sample size are characteris-
tics of high-throughput data. Therefore, robust statistical ap-
proaches are necessary for analyzing data obtained from microar-
ray, which may result in identifying reliable biomarker candidates. 
Orthogonal-partial least squares–discriminant analysis (OPLS-
DA) is a multivariate statistical method widely used for analyzing 
high-throughput data, leading to identifying differential variables 
significantly expressed among classified groups [58]. 

Reproducibility, also known as repeatability or precision, is the 
degree to which repeated measurements of an equal amount will 
display similar or comparable results. Standard deviation, variance, 
and Pearson correlation coefficient are commonly used to report 
the reproducibility of a dataset in the microarray technique. For 
ideally precise technologies, the variance of a measurement is zero 
[59]. For oligonucleotide arrays such as Agilent, Affymetrix, and 
Codelink, the Pearson correlation coefficient is calculated as > 0.9 
[60,61]. Due to the high-throughput property of the microarray 
technique, which makes it possible to screen the complete profile 
of molecules, it has been widely used for miRNA analysis [21,62]. 
The miRNA expression profiles have demonstrated more stability, 
accuracy, and reproducibility than mRNA signatures. Because of 
the high stability of miRNAs in body fluids, they are assigned valu-
able biomarkers for clinical diagnosis and prognosis of human dis-
eases [63-65]. However, a robust RNA isolation approach is nec-
essary for achieving reliable results. Trizol/TRI-reagent–based iso-
lation has demonstrated reproducible results, leading to consider-
able miRNA resistance to degradation when properly prepared 
and stored [66]. 

In the present study, we exposed differentially expressed miR-
NAs (DEMs) between H. pylori–induced gastric cancerous tissue 
and non-tumor tissue collected from H. pylori–positive patients. 
Subsequently, the targets of DEMs were determined, and a protein 
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interaction map (PIM) was built and analyzed. The most critical 
genes in the PIM were identified, and their prognostic impact in 
GC patients was studied using the GEPIA database. Moreover, the 
most significant pathways and Gene Ontology (GO) terms deregu-
lated in the H. pylori–induced GC were discussed. We followed the 
methods of Bayat et al. (2021) [67]. Of note, different p-value 
thresholds were used in this study for various analyses. Notably, Yue 
et al. [68] additionally used different p-value thresholds in their 
previous research to identify DEGs in metastasis nasopharyngeal 
carcinoma (NPC) samples compared to the nonmetastatic speci-
mens (p < 0.01), as well as enriched pathways in NPC (p < 0.05). 

Methods 

Microarray expression data acquisition and analysis 
The raw microarray expression dataset of GSE54397 [69] was ob-
tained as a TXT format from the Gene Expression Omnibus 
(GEO) source [70]. GSE54397 contained 32 observations con-
taining eight H. pylori–induced gastric cancerous tissues, eight 
non-tumor tissues collected from H. pylori–positive patients, eight 
gastric cancerous tissues obtained from H. pylori–negative pa-
tients, and eight non-tumor tissues collected from H. pylori–nega-
tive patients. The dataset was based on the GPL15159 platform 
(Agilent-031181 Unrestricted_Human_miRNA_V16.0_Mi-
croarray 030840). To discover novel risk factors in patients affect-
ed by H. pylori, a new dataset was selected from the GSE54397, 
which consisted of eight H. pylori–induced gastric cancerous tissue 
samples and eight tissue samples with no cancer signs were 
achieved from H. pylori–positive individuals. This might help to 
detect GC in infected individuals. Normalization was performed 
prior to statistical analysis. The OPLS-DA identified the DEMs 
between two groups using the R version 4.0.2 programming lan-
guage [71]. The cutoff conditions were set to an absolute Log2 
fold change |Log2 FC| > 1 and the p-value less than 0.01 [68,72]. 
The volcano plot of miRNAs in the two studied groups was 
achieved using the Shiny apps web-based tool [73]. Moreover, the 
hierarchical clustering of differential miRNAs was conducted uti-
lizing the R language. 

PIM construction, module detection, and functional analysis 
The validated targets of considerable DEMs were determined uti-
lizing the MiRWalk 2.0 [74]. The GO annotation analyses for 
these targets, including cellular components (CCs) and molecular 
functions (MFs), were carried out utilizing the ClueGO version 
2.5.7 tool [75]. The STRING online database [76] version 11.0 
was used to illustrate the interactions between target genes. The 

single proteins were excluded from the primary PIM before fur-
ther analysis. The PIM was analyzed using the Cytoscape software 
[77], leading to the identification of hub genes with the highest 
degree and betweenness centralities [78]. Moreover, clustering 
analysis was performed using the MCODE tool. Modules with the 
following benchmarks were assigned as significant condensed re-
gions: score ≥ 3, depth ≤ 100, k-score = 2, node score cutoff = 0.2, 
degree ≥ 2, and the minimum number of nodes = 10 [79]. There-
after, significant pathways and biological processes (BPs) enriched 
by these modules were studied. The Reactome database [79] and 
the ClueGO tool were used for pathway and GO annotation anal-
yses, respectively. The minimum number of enriched genes as two, 
besides the false discovery rate (FDR) as < 0.05 [67,68,80-83], 
were assigned meaningful for the affected pathways and BP terms 
in H. pylori–induced GC.  

Survival analysis  
The Kaplan-Meier curve was generated for the hub genes using 
the (GEPIA) web server [84] to investigate the prognostic impact 
of hub markers in gastric carcinoma. Furthermore, the Cox pro-
portional hazards regression model was utilized to determine the 
corrected hazard ratios (HR) and 95% confidence intervals of hub 
genes and evaluate the prognostic factors' independence. The 
prognostic impact of markers with the HR and log-rank test p < 
0.05 [67,80-83] were statistically considered meaningful. 

Identifying common DEMs between H. pylori–induced 
gastric cancerous tissues and H. pylori–negative specimens 
Besides the main dataset which was analyzed in this study (includ-
ing H. pylori–induced gastric cancerous tissues [n = 8] and non-tu-
mor tissues collected from H. pylori–positive patients [n = 8]), two 
other datasets were extracted from the GSE54397 as follows: one 
of them included H. pylori–induced GC samples (n = 8) and H. 
pylori–negative cancerous tissues (n = 8) and the other dataset 
contained H. pylori–positive GC specimens (n = 8) and H. pylori–
negative normal tissues (n = 8). All three datasets were analyzed 
using the OPLS-DA algorithm to detect the common DEMs in 
three different datasets. The DEMs with the criteria of the p-value 
less than 0.01 and |Log2 FC| more than one were statistically as-
signed significantly. 

Gene expression evaluation of prognostic markers 
The gene expression patterns of prognostic markers in GC were 
evaluated at the mRNA and protein levels using the GEPIA2 [84] 
and the Human Protein Atlas (HPA) databases, respectively. The 
GEPIA2 server provides boxplot analysis using stomach adenocar-
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cinoma tissues (n = 408) and normal gastric specimens (n = 211). 
The HPA has been developed since 2003 to map all the human 
proteins in cells, tissues, and organs using various technologies, in-
cluding antibody-based imaging and mass spectrometry-based 
proteomics. The HPA, freely available at https://www.proteinatlas.
org/ [85], allows researchers to access the expression patterns of 
the human proteome. 

Ethical approval
The present study was approved by the Ethics Committee of 
Hamadan University of Medical Sciences, Hamadan, Iran (ethics 
no. IR.UMSHA.REC.1399.583). No human/animal was used in 
this study.

Results 

DEMs in H. pylori–induced gastric carcinoma 
A predictive OPLS-DA model was constructed for the dataset 
containing H. pylori–induced gastric cancerous tissue samples (n = 
8) and non-tumor gastric tissue samples from H. pylori–positive 
patients (n = 8). The R2X, R2Y, and Q2 of the OPLS-DA were 
calculated as 0.344, 0.887, and 0.019, respectively (Fig. 1A). Four 
overexpressed, and one underexpressed miRNA were indicated to 
be statistically differential in H. pylori–induced GC patients com-
pared to the healthy controls (p < 0.01; |Log2 FC| > 1) (Table 1). 
Fig. 1B demonstrates the volcano plot of miRNAs in the studied 
groups. Moreover, Fig. 1C illustrates the heat map of differential 

Fig. 1. (A) The score plot in the predictive (x-axis) and orthogonal (y-axis) components of microarray data achieved from the tissue samples 
using the orthogonal projections to latent structures discriminant analysis. (B) The volcano plot of the miRNAs in Helicobacter pylori–
induced gastric cancer compared to the non-tumor tissue collected from H. pylori–positive patients. (C) The heat map and hierarchical 
clustering of differentially expressed miRNAs in the two studied tissues. OPLS-DA, orthogonal-partial least squares–discriminant analysis.
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miRNAs among case-control samples. 

Protein interaction map, clustering, and functional analyses 
Nine hundred seventy genes were determined as experimentally 
validated targets of DEMs. Therefore, a PIM was constructed 
based on these genes utilizing the STRING source with a confi-
dence score of ≥0.4. After excluding single nodes, a PIM with 931 
proteins and 6,861 interactions was imported into the Cytoscape 
for further analyses, including functional and structural studies. 
Eight substantial modules were detected inside the PIM (Fig. 2). 

Fig. 2. Module analysis. These genes are validated differentially expressed miRNAs-targets in Helicobacter pylori–induced gastric cancer 
tissues than H. pylori–positive samples with no cancer symptoms. The interactions between proteins were identified using the STRING 
knowledge database. The MCODE tool discovered eight substantial clusters in the graph. The hexagons illustrate seed nodes.

Table 1. Five of the miRNAs were assigned as differential in patients 
with Helicobacter pylori–induced gastric cancer compared to H. 
pylori–positive patients with non-cancerous tissue, identified by 
microarray analysis

miRNA ID FC disease/control ABS Log2 FC p-value
hsa-miR-21 2.86 1.51 0.00353
hsa-miR-18b 2.27 1.18 0.00846
hsa-miR-548a-5p 2.66 1.41 0.00706
hsa-miR-17 3.06 1.61 0.00556
hsa-miR-551b 0.31 1.71 0.0069

FC, fold change; ABS, absolute.
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Table 2 presents the topological features of each cluster. At an FDR 
of 0.05, 399 pathways and 224 BPs were significantly enriched in 
patients with H. pylori–induced GC than those with H. pylori–
positive patients with non-tumor gastric tissue. Moreover, 31 CCs 
and 51 MFs were affected considerably in H. pylori–induced gas-
tric carcinoma (FDR < 0.05) [67,80-83]. The most significant 
pathways and GO terms enriched in H. pylori–induced GC are 
demonstrated in Fig. 3. In addition to the network analysis results, 
the average degree and betweenness values of the nodes in the net-

work were 59.85 and 0.0149, respectively. Furthermore, 175 pro-
teins had degree and betweenness centrality values more remark-
able than the mean of the network vertexes and therefore, assigned 
as the most critical genes associated with the etiology of H. pylori–
induced GC, named hubs (Supplementary Table 1). Fig. 4A and 
4B demonstrate the top 10 hub genes regarding their degree and 
betweenness centralities, respectively. 

Fig. 3. Top-10 significant pathways (A), biological processes (B), cellular components (C), and molecular functions (D) enriched in 
Helicobacter pylori–induced gastric cancer patients regarding their false discovery rate. The x-axis demonstrates the pathway and gene 
ontology term's names, while the y-axis shows –Log10 of false discovery rate.

Table 2. Details of eight substantial clusters in the protein interaction map related to Helicobacter pylori–induced gastric cancer

Cluster No. MCODE score No. of nodes No. of edges Seed node Seed degree Seed betweenness
1 26 26 325 RLIM 32 0.0051
2 20.35 41 407 FOXO3 63 0.0104
3 10.837 44 233 SMAD2 64 0.0118
4 8.957 24 103 MRPS10 23 0.0042
5 6.474 39 123 NA NA NA
8 4.923 40 96 ATF2 33 0.0026
9 4.167 13 25 NA NA NA
15 3.091 12 17 SMARCE1 21 0.0029

NA, not available.
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Fig. 4. (A) Top-10 hubs based on the degree value. (B) Top-10 hubs according to their betweenness centrality.

Prognostic impact of the hub genes 
The overexpression of DOCK4, GNAS, CTGF, TGF-b1, ESR1, 
SELE, TIMP3, SMARCE1, and TXNIP significantly revealed a 
poor prognosis in GC patients. Therefore, these markers may par-
ticipate in the metastasis and recurrence of GC and could be con-
sidered potential cancer markers associated with a dismal progno-
sis in H. pylori–induced gastric carcinoma. In addition, enhanced 
expression of MRPS5 exhibited a favorable prognosis in GC pa-
tients. The Kaplan-Meier curves for these potential prognostic 
biomarkers are presented in Fig. 5. 

Common DEMs between H. pylori–positive GC samples 
and H. pylori–negative specimens 
By analyzing three different datasets, 30 DEMs were found in H. 
pylori–positive GC samples compared to H. pylori–negative speci-
mens. Also, 22 DEMs were identified in H. pylori–induced GC 
compared with the H. pylori–negative healthy controls. Moreover, 
has-miR-551b was a common DEM in H. pylori–induced GC 
compared to the other H. pylori–negative tissues (p < 0.01 and 
|Log2 FC| > 1) (Table 3). The common DEMs between three dif-
ferent datasets were discovered using the Venn diagrams (Fig. 6). 

Markers expression study 
According to the boxplot analysis, the mRNA levels of DOCK4, 
GNAS, TGFB1, SELE, and SMARCE1 demonstrated a consider-
ably higher expression in gastric adenocarcinoma than in healthy 
controls. CTGF and MRPS5 showed a mild overexpression in GC 
compared with normal gastric tissues. Besides, TXNIP illustrated 
a significant underexpression in GC compared to the healthy con-
trol specimens (Fig. 7). Based on the histopathological analysis, 
GNAS exhibited a higher expression in GC specimens than in 

healthy control tissues (Fig. 8A). As well, TXNIP expression was 
lower in stomach cancer compared with the normal gastric sam-
ples, consistent with boxplot analysis (Fig. 8B). 

Discussion 

GC is one of the prominent carcinoma-related deaths globally, 
with a dismal mean survival time, although some progress has 
been made in the diagnostic and therapeutic approaches. H. pylori 
is the primary human pathogen in the gastric mucosa of almost 
half of the global population, which participates in developing GC 
through the regulation of miRNA expression. miRNAs have been 
noticed as prognostic biomarkers in GC due to their gene regula-
tory role in cells, such as tumor suppressors and promoter func-
tions [86]. 

The present study revealed that the most substantial modules of 
the PIM associated with H. pylori–induced GC were primarily en-
riched in the ubiquitination system, neddylation pathway, and cili-
ary process. Moreover, overexpression of DOCK4, GNAS, CTGF, 
TGF-b1, ESR1, SELE, TIMP3, SMARCE1, and TXNIP was sig-
nificantly associated with poor prognosis. At the same time, in-
creased expression of MRPS5 revealed a favorable prognosis in pa-
tients with GC. Fig. 9 demonstrates the study design and critical 
points of the present study. 

The ubiquitin-proteasome system is an intracellular protein 
modification pathway that degrades most proteins in mammalian 
cells [87]. It is executed through ubiquitin-activating enzymes E1, 
ubiquitin-conjugating enzyme E2, and ubiquitin ligase E3 [88,89]. 
According to previous studies, dysregulation of E3 ubiquitin en-
zymes and impropriety targeting of the proteins by E3 leads to 
many disorders, such as cancer metastasis, including GC [90-93]. 
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Fig. 5. Survival analysis of DOCK4 (A), GNAS (B), CTGF (C), TGF-b1 (D), ESR1 (E), 
MRPS5 (F), SELE (G), TIMP3 (H), SMARCE1 (I), and TXNIP (J) genes. Blue and red 
lines demonstrate under and overexpressed markers, respectively. The y-axis and 
x-axis illustrate the probability of survival and survival months of patients with 
gastric cancer, respectively. The dotted lines show a 95% confidence interval. TPM, 
transcripts per million; HR, hazard ration.
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Table 3. Differentially expressed miRNAs in three datasets selected from GSE54397

Groups of study Total No. of 
common DEMs miRNA ID

Case vs. HP+ Normal & Case vs. HP– Cancer  
& Case vs. HP– Normal

1 hsa-miR-551b

Case vs. HP+ Normal & Case vs. HP– Normal 2 hsa-miR-21, hsa-miR-17
Case vs. HP– Cancer & Case vs. HP– Normal 1 hsa-miR-934
Case vs. HP+ Normal 2 hsa-miR-548a-5p, hsa-miR-18b
Case vs. HP– Cancer 28 hsa-miR-1321, hsa-miR-765, hsa-miR-3667-5p, hsa-miR-654-5p, kshv-miR-K12-3, ebv-

miR-BART16, hsa-miR-4300, hsa-miR-595, hsa-miR-492, hsa-miR-519e, hcmv-miR-
UL112, hsa-miR-4296, hsa-miR-3621, hsa-miR-320c, hsa-miR-1182, hsa-miR-630, hsa-
miR-939, ebv-miR-BHRF1-1, hsa-miR-28-3p, hsa-miR-3679-5p, ebv-miR-BART12, hsa-
miR-1291, hsa-miR-664, hsa-miR-3187-3p, hsa-miR-708, hsa-miR-3663-5p, kshv-
miR-K12-7, hsa-miR-1915

Case vs. HP– Normal 18 hsa-miR-25, hsa-miR-508-3p, hsa-miR-548d-5p, hsa-miR-3117-3p, hsa-miR-1305, hsa-
miR-335, hsa-miR-645, hsa-miR-3127-5p, hsa-miR-892b, hsa-miR-1288, ebv-miR-
BART19-3p, hsa-miR-3125, hcmv-miR-UL22A, hsa-miR-204, hsa-miR-375, hsa-miR-604, 
hsa-miR-148a, hsa-let-7c_v16.0

miRNA, microRNA; DEM, differentially expressed miRNA; HP+, Helicobacter pylori–positive; HP–, H. pylori–negative.

Fig. 6. Common differentially expressed miRNAs among Helicobacter 
pylori–induced gastric cancer tissues (case group) and H. pylori–
negative (HP–) samples. HP+, H. pylori–positive; Nor, normal; Can, 
cancer.

Thus, blocking the ubiquitin-proteasome pathways administers a 
novel approach to treating carcinomas [94]. 

The Cullin-Ring ligases (CRLs) are involved in the targeted 
degradation of approximately 20% of cellular proteins [95,96]. It 
has been reported that the misregulation of CRLs, especially 
CRL1, is linked to many human disorders, such as cancer [97,98]. 
Therefore, CRL1 ligase is a potential drug target for cancer treat-

ment [99-102]. Notably, the neddylation of cullins is required to 
form active CRLs E3 ligases. In the neddylation pathway, the pro-
tein NEDD8 is transferred onto the lysine of one of the cullin sub-
units by the NEDD8-conjugating enzyme and NEDD8-activating 
enzyme (NAE) [22,27,103,104]. According to previous studies, 
the neddylation pathway is upregulated in many human malignan-
cies. Therefore, targeting the neddylation pathway by inhibiting 
NAE has been demonstrated as an effective anticancer strategy in 
preclinical and clinical settings [98,101,105-108]. 

A cilium or cilia (plural) are immotile hair-like structures assem-
bled from the cell membrane of almost all eukaryotic cells. Several 
studies have linked tumorigenesis, tumor-relevant defects, and the 
deregulation of mammalian target of rapamycin signaling proteins 
localized at cilia [109,110]. Although the initiation of cancer de-
pends on the presence of cilia in medulloblastoma [111], the loss 
of cilia has been reported in different types of malignancies such as 
renal cell carcinoma [112], breast cancer [113,114], and basal cell 
carcinoma [115]. 

The dedicator of cytokinesis protein 4 (DOCK4) regulates cell-
cell adhesion junction and plays a role in cell metastasis [116-120]. 
In addition, this gene contributes to many biological processes in 
mammalians, including tumor cell malignant transformation, pro-
liferation, and metastasis [121]. Overexpression of DOCK4 has 
been linked to tumor progression and poor survival rate in patients 
with breast cancer [122] and liver cancer patients [123]. 

According to a previous study, GNAS mutation could result in 
tumorigenesis by activating the Wnt signaling pathway [124]. Gas-
tric adenocarcinoma of the fundic gland type (GAFG) is a sub-
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Fig. 7. Gene expression patterns at the mRNA level for prognostic markers in gastric cancer (GC) including DOCK4 (A), GNAS (B), CTGF (C), 
TGFB1 (D), ESR1 (E), MRPS5 (F), SELE (G), TIMP3 (H), SMARCE1 (I), and TXNIP (J). Box plots are based on 408 GC tissues (red color) and 211 
healthy gastric samples (green color). TPM, transcripts per million.

class of gastric adenocarcinoma [125]. Most GAFGs occur in 
non-atrophic gastric mucosa without H. pylori infections are infre-
quent branching and anastomosing tubules lined with basophilic 
columnar cells with mild nuclear atypia resembling chief cells 
[126]. In addition, pyloric gland adenoma (PGA) is another sub-
type of GC characterized by atrophic mucosa with constant in-
flammation as the cause of H. pylori infection [126,127]. Previous 
studies have linked the GNAS and KRAS (GTPase KRas protein) 
mutations and the development of PGA [128]. Survival analysis 
demonstrated that GNAS overexpression is significantly associat-
ed with a poor prognosis in GC patients. Besides, the boxplot and 
immunohistochemical analyses confirmed the GNAS overexpres-
sion in GC tissues at the mRNA and protein levels. 

It has been shown that higher expression of CTGF in gastric car-
cinoma contributes to peritoneal and local lymph node metastasis 
[129,130]. Moreover, CTGF suppression inhibits cellular prolifer-

ation and metastasis in GC [131]. Li et al. [132] reported that a 
higher mRNA expression of CTGF was positively associated with 
local invasion in GC cells. In addition, lower mRNA levels of 
CYR61 and CTGF revealed a more prolonged survival time in GC 
patients. Patients with enhanced CTGF, CYR61 and NOV mRNA 
levels demonstrated dismal mean survival times. 

Previous studies have linked the polymorphism of TGF-b1 
C-509T and the risk of promoting GC [133-136]. Chang et al. 
[69] demonstrated that the TGF-b1-509T allele contributed to 
TGF-b1 enhanced expression. Its overexpression in normal tissue 
revealed a potential promoting effect related to H. pylori infection, 
leading to the progression of intestinal-type GC. Moreover, 
TGF-b1 was overexpressed in the antrum of H. pylori–positive pa-
tients [137], and the TGF-b1 expression was significantly reduced 
after treating H. pylori infection [138]. Jayapal and Melendez [139] 
reported that the increased expression of several cytokines, such as 
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Fig. 8. Protein expression patterns of GNAS (A) and TXNIP (B) in gastric cancer. The left and right images demonstrate protein staining in 
cancerous and healthy tissues, respectively.

Fig. 9. A schematic of the present study's research design and main findings. BP, biological process; CC, cellular component; DEM, 
differentially expressed miRNA; GC, gastric cancer; MF, molecular function.
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TGF-b1, in the gastric antrum is associated with the infection 
caused by H. pylori. The feedback loop, including TGF-b1, Smad-
7, and CTGF, could be involved in the pathogenesis of H. pylori–
associated gastritis. CTGF is a downstream effector of TGF-b 
[140], so overexpression of TGF-b1 and CTGF can cause acute 
and maintained fibrosis [141]. 

Trefoil factor 1 (TFF1) is involved in gastric tumor suppression 
[142-144]; it is lost in more than 50% of GC cells because of epi-
genetic silencing, TFF1 deletions, or its transcription factors 
downregulation [145-147]. In breast cancer, estrogen receptor 1 
(ESR1) regulates the TFF1 expression. According to the results of 
other studies and our study, it may be speculated that the en-
hanced ESR1 expression in GC patients with a dismal outcome is 
due to the reaction of enhanced tumor size. However, this requires 
validation. 

Zhou et al. [148] reported lower protein and mRNA expression 
levels of MRPS5 in cancerous gastric tissue compared with the ad-
jacent tissues. This was executed by utilizing the Human Protein 
Atlas immunohistochemistry source [149] and quantitative re-
al-time polymerase chain reaction (qRT-PCR) analysis. According 
to previous studies and the results achieved from survival analysis, 
it may be hypothesized that MRPS5 acts as a tumor suppressor 
gene in GC and may be assigned as a favorable prognostic gene in 
GC patients. However, more experiments are required to verify 
the above. 

E-selectin, the protein encoded by the SELE gene, mediates the 
progression and invasion of GC through different mechanisms, in-
cluding promoting angiogenesis by activating the Src-PI3K path-
way [150,151]. A positive correlation has been observed in GC be-
tween the serum expression levels of circulating E-selectin and tu-
mor progression and metastasis, leading to a poor prognosis [152-
155]. Liarmakopoulos et al. [150] demonstrated that the E-selectin 
S128R C allele was related to dismal survival in GC patients. 

The aberrant expression of matrix metalloproteinase-3 (MMP-
3) and tissue inhibitor of metalloproteinase-3 (TIMP-3) is poten-
tially associated with metastasis in several carcinomas such as 
NPC [156], cervical cancer [157], breast cancer [158], lung can-
cer [159], and colon cancer [160]. The Kaplan-Meier analysis 
from the GEPIA database showed that the overall survival rate of 
the GC patients with overexpression of TIMP3 was lower than 
GC patients with down expression of TIMP3. This may be due to 
the response of increased cancer cell invasion and metastasis, al-
though this requires confirmation. 

Liu et al. [161] reported that SMARCE1 was overexpressed in 
GC cell lines and tissues. In addition, the upregulation of 
SMARCE1 was significantly linked with the malignant clinico-

pathological features of GC patients. Moreover, Liu et al. [161] re-
ported that the enhanced SMARCE1 expression was considerably 
related to a dismal prognosis in GC patients (p < 0.01). As well the 
enhanced SMARCE1 expression significantly induced the GC cell 
invasion in vitro, as well as tumorigenesis in vivo. 

TXN gene promotes hypoxia-inducible factor-1α, leading to 
vascular endothelial growth, tumor angiogenesis, and drug resis-
tance [162]. The enhanced TXN expression in tumors has been 
linked to a worse survival rate of patients in several carcinomas 
[163,164]. The TXN-interacting protein (TXNIP) suppresses the 
connection between TXN and other factors. Therefore, TXNIP 
upregulation attenuates the activity of TXN, leading to decreased 
proliferation and cell cycle progression in tumor cells [165,166]. 
Kwon et al. [167] demonstrated that the loss of TXNIP in a mouse 
model promoted H. pylori–induced GC. Evidence suggests that 
different ethnicities might affect the gene expression profile in pa-
tients with GC [168]. Based on the boxplot and histopathological 
analyses, it was revealed that TXNIP is downregulated in GC pa-
tients at mRNA and protein levels. 

Our study had certain limitations. Only eight H. pylori–induced 
gastric cancerous tissue samples and eight non-tumor tissue sam-
ples from patients infected with H. pylori were involved within the 
GSE54397; therefore, our sample size was not large. Including the 
more significant number of observations in the dataset may elevate 
the statistical potential and illustrate more considerable DEMs re-
lated to the etiology of H. pylori–induced GC. Besides, the miR-
NAs profiled in the present study may not support all miRNAs. In 
future experiments, large targeted groups are needed to verify 
these markers.  

It is suggested that five miRNAs are differentially expressed in 
patients with H. pylori–induced GC compared to H. pylori–positive 
patients with non-cancerous tissue (p-value less than 0.01 and 
|Log2 FC| > 1). In addition, PIM analysis revealed 176 hubs as 
proteins considerably taking part in the etiology of H. pylori–in-
duced GC. Survival analysis showed that the overexpression of 
DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, 
and TXNIP, could lead to a dismal overall survival rate. At the same 
time, the upregulation of MRPS5 was associated with a good prog-
nosis in GC patients. Therefore, these genes may be cancer markers 
for prognosis in H. pylori–induced GC. However, more investiga-
tions are required in the future to examine the tissue expression of 
these genes in H. pylori–induced GC and to understand better the 
exact role that these molecules serve in the carcinogenesis of the 
disease. In addition to the PIM functional analysis results, we found 
that the most substantial clusters were primarily enriched in the 
ubiquitination system, neddylation pathway, and ciliary processes. 
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