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The fishes of the Chiasmodontidae family, known as swallower fishes, are species adapted 
to live in deep seas. Several studies have shown the proximity of this family to Tetragonuri-
dae and Amarsipidae. However, the phylogenetic position of this clade related to other Pe-
lagiaria groups remains uncertain even when phylogenomic studies are employed. Since 
the low number of published mitogenomes, our study aimed to assemble six new mito-
chondrial genomes of Chiasmodontidae from database libraries to expand the discussion 
regarding the phylogeny of this group within Scombriformes. As expected, the composition 
and organization of mitogenomes were stable among the analyzed species, although we 
detected repetitive sequences in the D-loop of species of the genus Kali not seen in Chias-
modon, Dysalotus, and Pseudoscopelus. Our phylogeny incorporating 51 mitogenomes from 
several families of Scombriformes, including nine chiasmodontids, recovered interfamilial 
relationships well established in previous studies, including a clade containing Chiasmo-
dontidae, Amarsipidae, and Tetragonuridae. However, phylogenetic relationships between 
larger clades remain unclear, with disagreements between different phylogenomic studies. 
We argue that such inconsistencies are not only due to biases and limitations in the data 
but mainly to complex biological events in the adaptive irradiation of Scombriformes after 
the Cretaceous-Paleogene extinction event. 
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Introduction 

The Chiasmodontidae family comprises 36 species of marine fishes belonging to four 
genera with a worldwide distribution [1]. This group, traditionally known as swallowers 
fishes or snake tooth fishes, have mesopelagic and bathypelagic habits living below 200 m 
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depth [2]. As a result of the selective pressures of the environment 
with few food resources, these fish are known for their small size 
[2] and expandable stomachs, allowing the ingestion of prey much 
larger than the animal itself [3].  

Interfamilial relationships of Chiasmodontidae with other 
groups are uncertain. Different phylogenetic hypotheses were pos-
tulated in recent years [4-8]. Miya et al. [4] included Chiasmo-
dontidae and 14 other families in the Pelagiaria clade, highlighting 
the high support on the monophyly of the group. In addition, they 
argued that Amarsipidae and other Stromateoidei belong to the 
same clade. 

Like Chiasmodontidae and other Pelagiaria groups, Stromateoi-
dei was part of the order Perciformes in the past, until Nelson et al. 
[9] included Stromateoidei and Scombroidei in a new order called 
Scombriformes. Studies before Nelson et al. [9] had already 
shown that both Stromateoidei and Scombroidei suborders did 
not correspond to natural groupings [4-5,10,11]. Considering the 
phylogenetic relationships of most families traditionally allocated 
to these suborders with other groups within the Pelagiaria clade, 
Betancur et al. [5] included Chiasmodontidae and seven other Pe-
lagiaria families in Scombriformes. Although Betancur et al. [5] 
recognized that interfamilial relationships of Scombriformes were 
uncertain, genomic studies have demonstrated a strong phyloge-
netic relationship between Chiasmodontidae with Tetragonuridae 
[4-8,12] and Amarsipidae [7,8]. 

To date, only the mitochondrial genomes of Chiasmodon harteli 
(unpublished data), Chiasmodon asper, Dysalotus alcocki, and Kali 
indica of the Chiamodontidae family have been published [4]. 
However, only K. indica, D. alcoki, and C. harteli have their mitoge-
nomes deposited in the GenBank (the accession number provided 
for C. asper corresponds to the mitogenome of Champsodon cf. 
snyderi in the NCBI). This number is very small compared to the 
related family Scombridae, for example, which has dozens of mi-
togenomes deposited in the NCBI. In this way, our work aimed to 
assemble six new mitochondrial genomes for the group, expand 
the knowledge of the evolution and mitochondrial diversity of the 
family and provide new perspectives on their phylogenetic rela-

tionships. 

Methods 

We obtained raw library data of Chiasmodon niger (SRX10444742), 
Dysalotus oligoscolus (SRX7174474), Kali macrodon (SRX7174492), 
Kali macrura (SRX7174493), Kali normani (SRX7174494), and 
Pseudoscopelus astronesthidens (SRX7174526) from the Sequence 
Reads Archive (SRA) NCBI (Table 1). 

While the raw data from C. niger were obtained by targeted en-
richment of single copy exons (exon capture) [7], the other data 
were obtained by target capture of ultraconserved nuclear ele-
ments (UCEs) [12]. Although both types of sequencing do not 
include complete genome sequences, sequence capture is not 
100% accurate, and due to the presence of off-target sequences, it 
is possible to assemble mitogenomes from both exome and UCEs 
data [13,14]. 

We imported the raw data into the Galaxy Europe platform [15] 
and used NOVOplasty v4.3.1 [16] to assemble the mitochondrial 
genomes by the "de novo" method, ie without reference. Following 
the instructions of the NOVOplasty software (available at: https://
github.com/ndierckx/NOVOPlasty) we did not filter or quality 
trim the reads and used the raw genome dataset. As a seed, we 
used the complete mitogenome of K. indica (NC_022488.1) in 
the K. macrodon and K. normani assembling, and for the other spe-
cies, we used the corresponding COI mitochondrial gene sequenc-
es deposited in GenBank (Supplementary Material 1). 

We annotated all mitogenomes using MitoAnnotator [17] avail-
able on the MitoFish server (http://mitofish.aori.u-tokyo.ac.jp). 
We used the BLAST Ring Image Generator (BRIG) [18] to per-
form a comparative BLAST analysis of available Chiasmodontidae 
mitogenomes (literature and our assemblies) against our C. niger 
mitogenome assembly. We used the Tandem Repeats Finder [19] 
to visualize possible tandem repeat sequences in the mitogenomes. 

To perform the phylogenetic analyses, we manually extracted 
the sequences of the 13 protein-coding genes (PCGs) from our as-
semblies and added to the dataset the same genes from the mitog-

Table 1. Raw genomic data obtained from the NCBI for each species

Species BioProject ID SRA ID Raw reads
Chiasmodon niger PRJNA644198 SRX10444742 510.7M
Dysalotus oligoscolus PRJNA561597 SRX7174474 326.2M
Kali macrodon PRJNA561597 SRX7174492 330.9M
Kali macrura PRJNA561597 SRX7174493 743.2M
Kali normani PRJNA561597 SRX7174494 142.1M
Pseudoscopelus astronesthidens PRJNA561597 SRX7174526 420.6M
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enomes of K. indica (NC_022488.1), D. alcoki (NC_022482.1), C. 
harteli (AP012975.1), 42 mitogenomes from the other 15 families 
of Scombriformes (Supplementary Material 2), and Aeoliscus strig-
atus (Syngnantiformes) as an outgroup (NC_010270.1). We 
aligned the sequences with Muscle [20] in Mega X software [21] 
and concatenated the alignments in SequenceMatrix v1.8 [22]. 
We constructed the phylogeny by the maximum likelihood meth-
od in IqTree v2.1.2 software [23] using 1,000 ultrafast bootstrap 
replications and using the evolutionary model TVM+F+R6 esti-
mated by the ModelFinder [24] of IqTree. 

The mitochondrial genomes have been deposited in GenBank 
under the following accession numbers: C. niger, ON831389; D. 
oligoscolus, ON831390; K. macrodon, ON831391; K. macrura, 
ON831392; K. normani, ON831393 and P. astronesthidens, 

ON831394. 

Results and Discussion 

As expected, all mitogenomes showed the same arrangement and 
gene content (Fig. 1), with 13 PCGs, 22 tRNAs, two rRNAs, and 
a control region (D-loop), with all PCGs (except ND6) in the 
heavy chain and eight tRNAs in the light chain, as has been ob-
served in most vertebrate mitogenomes, including teleosts, de-
scribed [25]. 

We deposited all mitogenomes in GenBank (Supplementary 
Material 1). Mitogenomes ranged from 16,468 bp in P. astronesthi-
dens to 16,627 bp in K. macrodon and K. normani. We found tan-
dem repeats in the D-loop of all three species of the genus Kali, 

Fig. 1. Comparative mitogenomics analysis of all the nine chiasmodontid fishes against a reference (Chiasmodon niger), generated by BLAST 
Ring Image Generator (BRIG). Gaps in rings correspond to regions with <50% identity to the reference sequence (BLAST comparison).
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with three repeating sequences in K. macrura and five in K. macro-
don and K. normani (Supplementary Material 3), but we did not 
find repeat regions in the mitogenomes of C. niger, D. oligoscolus, 
and P. astronesthidens. Repetitive sequences in the D-loop shared 
between species of the same genus have already been reported for 
fishes from the tribe Gymnocharacini and may play a key role in 
the study of the evolutionary history of these groups [26]. 

Among the intrafamilial phylogenetic relationships observed for 
Chiasmodontidae, all species of the genera Chiasmodon and Kali 
formed monophyletic groups, and the two Dysalotus species used 
did not cluster (Fig. 2), rather than observed in previous phyloge-
nomic studies [8]. Chiasmodontidae formed a clade with Tetrago-
nuridae and Amarsipidae, corroborating previous phylogenomics 
and mitogenomics studies [4,7,8,12]. As observed in previous 
studies [4,6-8,12], other interfamilial phylogenetic relationships re-
covered in this work were: Stromateidae as a sister group of Nomei-
dae + Ariommatidae and Trichiuridae as a sister group of Gempyli-
dae (Fig. 2). These clusters correspond to clades A (Stromateidae, 
Ariommatidae and Nomeidae), C (Chiasmodontidae, Tetragonuri-
dae and Amarsipidae) and partially B (Gempylidae and Trichiuri-
dae, but not Scombrolabracidae) described by Arcila et al. [7]. 

In the same way Miya et al. [4] and Campbell et al. [6], but un-

like Friedman et al. [12], Arcila et al. [7], and Harrington et al. [8], 
we recovered Caristiidae as a sister group to Icosteidae and Po-
matomidae as a sister group to Arripidae. As well as the mitoge-
nomic analysis by Miya et al. [4] we also recovered Gempylidae as 
a paraphyletic group related to Trichiuridae, and Centrolophidae 
as a sister group of Scombrolabracidae (Fig. 2). However, the rela-
tionships between larger clades containing two or more closely re-
lated families remain uncertain and discordant among the different 
phylogenetic analyzes cited here. 

The increase in the number of published mitogenomes associat-
ed with the stable organization of this genome among vertebrates, 
the improvement of assembly techniques, and its maternal nature 
without recombination make the mitochondrial genome a tool 
with great potential to solve taxonomic problems and phylogenet-
ic relationships [26,27]. Furthermore, as all mitochondrial genes 
are linked on the same chromosome, they have a very similar phy-
logenetic signal and share a unique phylogenetic history, allowing 
them to be used concatenated and partitioned in phylogenetic 
analyses [28]. However, incongruities between nuclear and mito-
chondrial data are frequently reported in the literature. These in-
consistencies may be related to data biases and limitations such as 
saturation, incomplete lineage sampling, differences in taxa sam-

Fig. 2. The phylogenetic tree of Chiasmodontidae mitogenomes and other 43 species available in GenBank. The bootstrap values were 
indicated in each branch of the tree. Aeoliscus strigatus was selected as an outgroup.
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pling, gene partitioning, and other phylogenetic methods em-
ployed [27,29-31]. Important biological factors may underlie 
these divergences, such as past events of hybridizations, selection, 
and complex biogeographic events with secondary contact of allo-
patric populations and replacement of mitochondria [29,31,32].  

Since the Scombriformes experienced rapid adaptive radiation 
after the Cretaceous-Paleogene mass extinction [4,12] the high 
degree of uncertainty reported in the phylogenetic relationships of 
the group is natural [6,7]. Although some interfamilial phyloge-
netic relationships, such as Chiasmodontidae with Tetragonuridae 
and Amarsipidae, are strongly supported, major clade relationships 
remain uncertain even when phylogenomic approaches are em-
ployed, which may result from complex biological events during 
post-mass extinction adaptive irradiation, as hybrids between lin-
eages, like the radiation of placental mammals [33]. In this way, 
the phylogenetic representation through two-dimensional trees 
may not be the best way to illustrate the evolutionary history of the 
Scombriformes, by “hiding” such events. Finally, we strongly sug-
gest that future phylogenetic analyzes of the group not only in-
crease the amount of data used but also incorporate phylogenetic 
network analyses. Compared to conventional phylogenetic trees, 
phylogenetic networks can visualize in a single image conflict be-
tween different phylogenetic hypotheses using crosslinks between 
branches. This type of analysis can be used when complex biologi-
cal events, called reticulated events, such as hybridizations, recom-
bination, horizontal gene transfer, duplications or gene loss are 
suspected [33,34]. 
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