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Analyzing patterns in data points embedded in linear and non-linear feature spaces is con-
sidered as one of the common research problems among different research areas, for ex-
ample: data mining, machine learning, pattern recognition, and multivariate analysis. In 
this paper, data points are heterogeneous sets of biosequences (composite data points). A 
composite data point is a set of ordinary data points (e.g., set of feature vectors). We theo-
retically extend the derivation of the largest generalized eigenvalue-based distance metric 
Dij(γ1) in any linear and non-linear feature spaces. We prove that Dij(γ1) is a metric under 
any linear and non-linear feature transformation function. We show the sufficiency and 
efficiency of using the decision rule     (i.e., mean of Dij(γ1)) in classification of heteroge-
neous sets of biosequences compared with the decision rules minΞiand medianΞi. We ana-
lyze the impact of linear and non-linear transformation functions on classifying/clustering 
collections of heterogeneous sets of biosequences. The impact of the length of a sequence 
in a heterogeneous sequence-set generated by simulation on the classification and clus-
tering results in linear and non-linear feature spaces is empirically shown in this paper. We 
propose a new concept: the limiting dispersion map of the existing clusters in heteroge-
neous sets of biosequences embedded in linear and nonlinear feature spaces, which is 
based on the limiting distribution of nucleotide compositions estimated from real data sets. 
Finally, the empirical conclusions and the scientific evidences are deduced from the experi-
ments to support the theoretical side stated in this paper. 
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Introduction 

Biological databases are the normal hosts for bio-sequences. Analyzing bio-sequences is 
the main role of the sequence analysis research field. Biological databases are organized 
based on either (1) information and knowledge that is implicitly associated with bio-se-
quences, or (2) information and knowledge that is extracted from bio-sequences. In this 
paper, the key words bio-sequences and sequences have the same meaning, and we use 
them interchangeably. The process of submitting sequences by the existing scientific re-
search labs is a continuous process. Therefore, the volumes of the existing biological data-
bases are increasing continuously. On the other hand, to capture and analyze the useful 
and undetectable information contained in biological datasets, the sequence analysis re-
search community is encouraged to propose the next-generation of sequence analysis 
methods, algorithms and techniques. It should be noted that the existing sequence analysis 
methods, algorithms and techniques are categorized into different research fields, for ex-
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ample: machine learning, pattern recognition, data mining, bioin-
formatics, and signal processing. 

Plants, organisms and microorganisms are classified into different 
classes. In the 19th century, Francis Galton [1], the first geneticist, 
studied data collected from different types of peas. He studied mea-
surements (i.e., features) extracted from parent and offspring. Clas-
sification is a natural human process, which can be performed by 
the human brain to classify different types of entities. Computa-
tionally speaking, the classification process can be performed by 
computational devices (i.e., machines) using a well-defined classifi-
cation algorithm. The classification process can be performed using 
two different modes: either (1) classification or (2) clustering. The 
data availability and the availability of information about data are 
considered key points in selecting the appropriate mode to perform 
the required classification process. The classification process can be 
performed using: (1) statistical approaches, (2) artificial neural 
network (ANN) approaches, and (3) syntactical approaches [2,3]. 
The existing approaches can only process ordinary data points (e.g., 
feature vectors or sequences). An ordinary data point is a one-entity 
data point, for example: observation of feature variable (uni-vari-
ate), feature vector, string or sequence. 

As we mentioned, in this paper, the data points under consider-
ation are sets of heterogeneous sequences (composite data points). 
A composite data point is a multi-entity data point, for example: set 
of feature vectors, set of strings or sequences. The extracted infor-
mation from sets of heterogeneous sequences (composite data 
points) can be evaluated as either perfect or imperfect information 
[4]. The imperfect information has an impact on the decision-mak-
ing process. Hence, there are two types of decisions: (1) risky deci-
sions (type-1) and (2) decisions with uncertainty (type-2) [4]. 
The risky decision [4] is a decision with the following attribute: its 
risk can be analyzed or interpreted by a probabilistic model or a 
fuzzy model. The uncertainty decision [4] is a decision with the 
following attribute: its risk cannot be analyzed or interpreted by a 
probabilistic model or a fuzzy model. The risk is defined as the gray 
area between certainty and uncertainty. If the sequence-based data-
sets under consideration are collected to represent a biological phe-
nomenon (e.g., viral infection, spread of diseases), then type-2 deci-
sions are considered unsafe. Part of the solution lies in drawing up a 
road map for developing the next-generation of feature extraction, 
and sequence-analysis techniques. To pave the path for the re-
searchers in the field, in this paper, we aim to tackle the problem of 
analyzing sequence-sets from a different angle. The generalized 
largest eigenvalue-based distance metric Dij(γ1) proposed in 
Daoud’s study [5] (defined in Daoud’s study [6] as Mosaab-metric 
Space) can be discovered in a different way. We aim to extend the 
theoretical and practical sides of Dij(γ1) in any linear and nonlinear 

feature spaces. Moreover, we use the key words: group of sequenc-
es, sequence-set, and set of sequences interchangeably. 

The remaining sections of this paper are summarized as follows. 
In the next part of this section we present the related work. Section 
I presents the extension of the largest generalized eigenvalue-based 
distance metric in any linear/non-linear feature spaces. Section II 
presents the experiments and results. Finally, conclusions and fu-
ture work are given in section III. 

In genetics, the datasets under consideration are sequence-based 
datasets, where each data point is either a biological sequence (ordi-
nary data point) or a set of biological sequences (composite data 
point). There are three types of biological sequences. The types of 
biological sequences are defined as follows: (1) DNA sequences, (2) 
RNA sequences, and (3) PROTEIN sequences. In terms of lan-
guage modeling, each type of biological sequences is drawn from a 
different alphabet. The alphabets of DNA, RNA, and PROTEIN se-
quences are defined as follows: 
ΣDNA = {A, C, G, T}, ΣRNA = {A, C, G, U}, and ΣPROTEIN = {A, R, N, D, 
C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V} respectively. The se-
quences are either classified or clustered (grouped) based on their 
biological features (e.g., homology). For example, in nature, the seg-
mented genome of influenza virus is a homology-free group of se-
quences. In fact, the segmented genome of influenza virus is consid-
ered as a heterogeneous sequence-set, because its sequences have 
different biological functions and different nucleotide compositions. 
Moreover, there is another type of sequence-set, the homogeneous 
sequence-set, where sequences are grouped in a sequence-set based 
on their common biological features (e.g., sharing a common ances-
tor) using various algorithms, for example, multiple alignment algo-
rithms, pairwise alignment algorithms, and alignment-free algo-
rithms. 

In the recent years, the capacity of the research work in the area of 
sequence analysis has been developed rapidly and extensively, and 
the objective is to analyze different types of sequences at different 
molecular levels (e.g., primary structure, secondary structure). Ana-
lyzing sequence-sets in feature spaces is a new developing research 
direction. Daoud and Kremer established a new platform for the 
new research direction: Alignment-free Sequence-Set Analysis [5-7], 
and achieved the first successful attempt in 2010. The new research 
direction basically focuses on analyzing patterns in classes of se-
quence-sets without using alignment. In the next part of this sec-
tion, we present the related research work. 

Daoud and Kremer [8] proposed a new technique to extract fea-
ture vectors embedded in Rp from sets of homogeneous sequences 
(e.g., families of biological sequences), to implement statistical and 
neural classification techniques on homogeneous sequence-sets in 
linear feature space using the linear transformation X =(X1,X2,…, 
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Xp)’, instead of data space. The proposed technique works vertically 
on the sequences of each independently aligned homogeneous se-
quence-set. Precisely, instead of mapping each sequence of a homo-
geneous sequences-set into the feature space (i.e., each sequence is 
represented by one observed feature vector or data vector x), the 
technique map the whole homogeneous sequences-set into linear 
feature space by converting each ordered pair of sequence-set sites 
into data vector in order to preserve the common hidden informa-
tion structure in homogeneous sequences-sets (Fig. 1), unaligned 
sequence-set with common information structure). Moreover, 
Daoud and Kremer [8] proposed a new classification algorithm to 
classify aligned homogeneous sequences-sets in linear feature space. 
The proposed statistical classification algorithm is considered as a 
variance-covariance structure-based classification algorithm [8], 
where the optimization on the statistical side is defined in terms of 
statistical variation to capture biological variation in homogeneous 
sequence-sets. Hence, the proposed theory connects the statistical 
variation as a statistical concept with the biological variation as a bio-
logical concept. The classification algorithm is built upon using the 
following largest generalized eigenvalue-based distance metric: 

(1)
 

where γ1 the largest generalized eigenvector associated with λ1, the 

largest generalized eigenvalue of the matrix (Ωi-Ωj), and Ωi and Ωj 
are the variance-covariance matrices of the sequence-sets i and j re-
spectively. Dij(γ1) is a (matrix inverse operation)-free distance met-
ric. In addition, Daoud [5] solved the sequence-set proximity prob-
lem under the homology-free assumption, which is defined as the 
problem of measuring the closeness between any two sets of bio-se-
quences (two composite data points), where the homology as-
sumption is unknown within each sequence-set or between se-
quence-sets. It is a generalization of the sequence proximity prob-
lem. The sequence proximity problem is defined as the problem of 
measuring the distance between any two given sequences, or 
among the sequences of a given sequence-set in a pairwise manner. 
It should be noted that the existing (1) pairwise alignment, (2) 
multiple alignment, and (3) alignment-free based distance/similar-
ity measures are designed to solve the sequence proximity problem 
under the homology assumption [9,10]. The generalization of se-
quence proximity problem shrinks the effectiveness and the validity 
of the existing alignment-based and alignment-free distance/simi-
larity measures, thus, a distance measure at the sequence-set level is 
required [5] to perform the following tasks on sequence-sets under 
the homology-free assumption: (1) searching, (2) classification, 
and (3) clustering, (4) detecting variation, and (5) visualization. 
The proposed distance metric given in 1 shows robustness in per-
forming the required tasks on sequence-sets under the homolo-

Fig. 1. Example: set of sequences with or without common information structure.

Sequence-Site

Set of sequences of size 6 w
ith

 com
m

on im
form

ation structure
Set of sequences of size 6 w

ith
 com

m
on im

form
ation structure

Sequence

Genomics & Informatics 2019;17(4):e39

3 / 20https://doi.org/10.5808/GI.2019.17.4.e39



gy-free assumption. The time complexity of the proposed distance 
metric is linear while the time complexity of local alignment-based 
distance measures is quadratic [5,6]. Comparisons between the 
proposed largest generalized eigenvalue-based distance metric Di-

j(γ1) and the alignment-based distance measures are given in 
Daoud’s study [1,3], and the results show robustness in terms of se-
lectivity, sensitivity, and time complexity. Moreover, the proposed 
algorithms in Daoud et al’s study [5,6,8,11] are designed using the 
following principles. 

(P0) Homogeneous sequence-set must be mapped from data 
space into feature space as one entity to preserve its hidden common 
information structures. It is expected that the sequences of any ho-
mogeneous sequence-set have common information structures. In 
feature space, a statistical assumption-free representation is consid-
ered, for example, the variance-covariance structure, and a vari-
ance-covariance structure-based distance measure is proposed to de-
sign supervised and unsupervised distance-based classifiers (Fig. 1). 

(P1) Heterogeneous sequence-set must be mapped from data 
space into feature space as separated sub-entities (i.e., as separated 
sequences), since there is no prior knowledge about the existence 
of common information structures among those sub-entities. In 
feature space, statistical assumption-free representation is consid-
ered, which is the variance-covariance structure, and a variance-co-
variance structure-based distance measure is proposed to design 
supervised and unsupervised distance-based classifiers (Fig. 1). 

The common corner in both principles is the variance-covari-
ance structure. The variance-covariance structure is a statistical in-
formation structure with the following characteristic: it is a relation 
descriptor which can be used to statistically describe all possible re-
lations between feature variables of a feature vector embedded in Rp 
in terms of co-variation and variation. It has a matrix form, which it 
is embedded in Rp ×  Rp. To solve the sequence-set proximity prob-
lem under the homology-free assumption, a variance-covariance 
structure-based distance measure (or metric) is required to achieve 
this goal. The most popular variance-covariance structure-based 
distance measures is the Mahalanobis distance measure. The com-
putation of Mahalanobis distance measure requires the inverse of 
the variance-covariance matrix. Hence, the measure is inapplicable 
in the case of singular matrices, in addition, the matrix inverse oper-
ation is computationally expensive operation. The singularity of 
variance-covariance matrices shrinks the applicability of well know 
multivariate statistical analysis techniques, for example: principal 
components analysis (PCA), factor analysis, variance-covariance 
matrices-based test statistics, unless a new matrix transformation is 
defined. In this case and in terms of time complexity, more compu-
tations will be added. 

Forstner metric is a mathematical metric that can be used in mea-

suring the difference between two variance-covariance matrices 
[12]. It is entirely based on only the generalized eigen-problem of 
two variance-covariance matrices. The metric is defined as the sum 
of squared logarithms of the eigenvalues of                              . Therefore, 
Forstner metric requires the inverse of one of the variance-covariance 
matrices. Hence, the metric is inapplicable in case of singular matri-
ces, in addition, computationally, the matrix inverse operation is an 
expensive operation. The metric has no statistical interpretation. 

ANN are well known stochastic approximation models and pow-
erful in performing classification tasks. The Vanilla back-propaga-
tion ANN used in Daoud and Kremer’s study [8] to classify aligned 
homogeneous sequence-sets (aligned RNA families) in linear fea-
ture space. The network trained with the standard gradient descent 
approach implemented by the generalized delta rule. The proposed 
ANN-based algorithm shows its effectiveness in classifying aligned 
homogeneous sequences-sets (aligned RNA families) in linear fea-
ture space [8]. Moreover, Daoud and Kremer [11] proposed a nov-
el algorithm for detecting similarities between aligned homoge-
neous sequence-sets in linear feature space using the steady state 
concept of PCA-neural network. The proposed algorithm designed 
using the valuable equilibrium property of the PCA–neural net-
work, which is defined as: training the PCA–neural network with 
two sets of feature vectors using the generalized Hebbian rule, 
where each set of feature vectors represents an aligned homoge-
neous sequence-set, may lead the PCA–neural network to converge 
to the same attractor point or to two different attractor points. In 
this context, the attractor point is defined in terms of the principal 
axises (i.e., eigenvector). ANN and PCA–neural network can only 
process ordinary data points, therefore, we implemented computa-
tional modification to process composite data points. As a conclu-
sion, the computational modification shrinks the capability of those 
stochastic approximation models to process large number of com-
posite data points. For example, at each computational phase, we 
can compare two composite data points using the steady state con-
cept of PCA–neural network to conclude similarities or dissimilari-
ties. As we mentioned, one of the effectiveness of the new vari-
ance-covariance structure-based statistical pattern recognition sys-
tem proposed in Daoud’s study [5] is its capability to process large 
number of composite data points, specifically, heterogeneous sets 
of sequences. The comparison between the existing machine learn-
ing approaches and the proposed variance-covariance statistical 
pattern recognition system is given in Fig. 2. 

The statistical variation is a well-known measure (statistic) in sta-
tistical sciences, and it is rapidly used in life sciences to measure and 
analyze biological variation in biological datasets. The generalized 
form of the statistical variation is the variance-covariance structure, 
which is represented by the variance-covariance matrix. The vari-
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ance-covariance matrix is a symmetric positive definite matrix that 
represents a summary of variations and co-variations of a vector of 
feature variables. The off-diagonal elements of the variance-covari-
ance matrix are the co-variances of feature variables, while the diag-
onal elements of the variance-covariance matrix represent the vari-
ances of feature variables [1]. The distribution of the eigenvalues of 
variance-covariance matrices has been studied in multivariate statis-
tical analysis [13]. The problem of comparing two variance-covari-
ance matrices has been studied extensively in the areas of multivari-
ate statistical analysis and applied statistics, and it is reduced to the 
problem of analyzing the generalized eigenstructure (i.e., eigenvec-
tors associated with eigenvalues) of two or more variance-covari-
ance matrices. The existing generalized models of PCA are as fol-
lows: (1) the Generalized Principal Component Analysis Model 
(GPCA) [14], (2) the Common Principal Components Analysis 
Model (CPCA) [15,16], and (3) the MD-Generalized Principal 
Component Analysis Model (MD-GPCA) [17] are entirely differ-
ent from the concepts of (a) distance measure, (b) generalized dis-
tance measure, (c) metric and metric space, (d) generalized metric 
and generalized metric space. Those models are defined in terms of 
the generalized eigenstructure (i.e., eigenvectors associated with ei-
genvalues) of well-defined functions of variance-covariance matri-

ces              		               . All those theoretical models 
are statistical assumption-based models. The input of Generalized 
Models of PCA are feature vectors (ordinary data points), and the 
outputs are generalized eigenvectors and generalized eigenvalues 
(i.e., they are not distance values). At each computational phase, the 
Generalized Principal Component Analysis Models (GPCA and 
MD-GPCA) can process two composite data points. The Common 
GPCA can process few composite data points under the following 
statistical assumptions: feature vectors are assumed to have multivar-
iate normal distributions, and covariance matrices must be non-sin-
gular matrices. Therefore, we note that, both Forstner metric and 
Mahalanobis distance measure are different from GPCAs proposed 
in Flury and colleagues’ studies [14-17]. At this point, Comparisons 
between the proposed metric Dij(γ1) and the existing PCA-based 
(dis)-similarity comparison models GPCAs can be found in 
Daoud’s study [5], which are approximately identical to the above 
comparisons. In other words, the concept of Dij(γ1) is different from 
the concepts of all the existing GPCAs. 

In the case of heterogeneous sequence-sets, the mixture model is 
the appropriate statistical model that can be applied in analyzing 
heterogeneous sequence-sets in feature space. Learning from a mix-
ture model is not an easy task due to the characteristics of the mod-

Fig. 2. The comparison between the existing machine learning approaches and the proposed variance-covariance statistical pattern recog-
nition system.
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el. For example, the model can only process ordinary data points 
(observed feature vectors/data vectors). In addition, defining a 
weighted probability distribution function for the mixture model re-
quires a statistical estimation technique to estimate its weights (core 
parameters). As a matter of fact, the estimation technique and the 
data availability have an impact on the decision-making process. In 
this context, we can shape the following: most of the proposed sta-
tistical techniques are derived using statistical assumptions. Those 
assumptions can be easily violated due to the nature of real-world 
problems. The violation of statistical assumptions may jeopardize 
the performance of the existing statistical techniques in analyzing 
datasets under consideration. Consequently, the next-generation of 
statistical learning models are expected to be assumption-free mod-
els, and hence, they can be implemented on a wide range of datasets. 
For example, if the statistical decision rule is derived using the fol-
lowing statistical assumption: the feature vector has a specific proba-
bility distribution (e.g., multivariate normal distribution), then it is 
not necessary that the assumed feature vector follows the same prob-
ability distribution in all datasets under consideration. The assump-
tion is expected to face violation in real-world problems, and different 
datasets are expected to have different probability distributions. 

To proceed further in presenting the research work, we must pres-
ent the following facts. Any biological sequence is linear in time. Sta-

tistically speaking, any biological sequence is defined as ordered 
symbols (i.e., bases or nucleotides), where those symbols are drawn 
from a finite alphabet based on a specific probability distribution 
(i.e., nucleotide composition). This statistical assumption is not al-
ways true, and by performing the following simple experiment, we 
can confirm this fact. By sliding a window on any biological se-
quence from one end to another, the resultant local probability dis-
tributions of the nucleotide composition are not always homoge-
neous (i.e., having same probability distribution along any biological 
sequence) (Fig. 3). Thus, in the case of a homogeneous sequence-set, 
it is not always biological sequences that constitute a sequence-set 
have homogeneous probability distribution, but they are homoge-
neous in the sense of sharing the same ancestor. Thus, those sequenc-
es are biologically homogeneous, but statistically, the nucleotide 
composition of each sequence is hard to be modeled by one proba-
bility distribution. This fact is true for any heterogeneous se-
quence-set, and thus it is a violation for the statistical assumption of 
the mixture model (i.e., probability distributions are specified in ad-
vance), and in this case, the mixture model is inapplicable. 

In this paper, we anticipate that the proposed metric Dij(γ1) in 
Daoud’s studies [5,6] can be theoretically and practically extended 
in any linear and nonlinear feature spaces to solve the sequence-set 
proximity problem under the homology-free assumption. In this 

Fig. 3. (A) The nucleotide density of each biological sequence in a segmented genome of a influenza virus (a composite data point) using 
1-grams and 2-grams feature vectors. (B) Figures counts the number of each type of base or word in a biological sequence using mat-
lab-bioinformatics toolbox.
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section, we presented the related work, in the next subsection, the 
statement of the problem is presented. 

The statement of the problem (the extension of Dij(γ1) in 
any linear and nonlinear feature spaces) 
Our work is exclusively focuses on the following: we aim to extend 
the theoretical-side and practical-side of the metric Dij(γ1) in any 
linear and nonlinear feature spaces, where each data point is a set of 
heterogeneous sequences (i.e., each data point is a composite data 
point or a dataset). We aim to show the efficiency and sufficiency of 
using the mean of the distance values of Dij(γ1) instead of using the 
minimum or the median of the distance values in solving the classi-
fication problem of heterogeneous sequence-sets in any linear and 
nonlinear feature spaces. We aim to analyze the impact of linear and 
non-linear transformation functions on classifying/clustering col-
lections of heterogeneous sets of biosequences. We aim to show the 
impact of the sequence length on the classification and clustering of 
simulated heterogeneous sequence-sets generated form real hetero-
geneous sequence-sets in linear and nonlinear feature spaces. 

It should be noted that all the existing data mining and machine 
learning methods are ordinary data point-based methods (e.g., ob-
served feature vector, sequence). Generalization from ordinary data 
point to composite data point (e.g., set of observed feature-vectors, 
set of sequences) has not been achieved yet by the research com-
munities in the fields of data mining and machine learning. Trans-
forming data points from a one feature space to another linear or 
nonlinear feature space has the effect of detecting varieties of unde-
tectable (dis)-similarities among data points. 

After we presented the statement of the research problem under 
consideration, the objectives of this paper are entirely different from 
the objectives of the research work presented in Daoud et al’s stud-
ies [5,6,8,11,18]. However, the objectives of this paper are consid-
ered as core objectives of the research topic: Alignment-free Se-
quence-set Analysis or implicitly Bio-Data Mining of Composite 
Data Points. Moreover, the research work presented in this paper is 
an extension of the research work presented in Daoud et al’s studies 
[5,6,8,11,18]. In the next section, the extension of Dij(γ1) in any lin-
ear and nonlinear feature spaces is presented.  

Methods  

The extension of Dij(γ1) in any linear and nonlinear feature 
spaces 
In this section, we present the theoretical extension of Dij(γ1) in any 
linear and nonlinear feature spaces. Dij(γ1) [5,6,18] is a variance-co-
variance structure based distance measure, that can measure the 
distance between any two variance-covariance matrices embedded 

in (Rp × Rp). The measure is a matrix inverse operation-free mea-
sure which can work with singular matrices and it requires less 
computation compared with Mahalanobis distance measure and 
Forstner metric. The measure is built upon the generalized GPCA, 
and implicitly the generalized eigen-problem, but conceptually it is 
irrelevant to the concept of a model. In fact, it is a measure. Dij(γ1) 
requires no prior statistical-based assumptions, which make it easy 
to implement, and thus, it is an assumption-free distance measure. 
The datasets under consideration are sequence-based datasets. Se-
quences may vary in length, and in terms of uncertainty, we assume 
that each sequence is generated by a stochastic source, in other 
words, ∃ a statistical model (Model) such that the nucleotide com-
position of a given sequence can be modeled using (Model). If se-
quences in a sequence-set have the same biological function and 
implicitly have the same nucleotide composition, then it is called a 
homogeneous sequence-set, otherwise, it is called a heterogeneous 
sequence-set. Usually, each data point embedded in the data space 
is a sequence. Suppose that each data point embedded in the data 
space is a heterogeneous set of sequences. In this context, and for 
each heterogeneous sequence-set embedded in data space, it is hard 
to assume unrealistic assumptions, for example: the nucleotide 
composition of each sequence can be modeled by one probability 
distribution or by probability distributions that are generalizable to 
all other sequences in a heterogeneous sequence-set. 

The stages of data life cycle have an impact on the data mining 
phase and decision-making phase. In any dataset, the existence of 
hidden information structures is expected, therefore, it is required to 
map datasets under consideration into various feature spaces to rec-
ognize, analyze, and visualize the existence of hidden information 
structures. This strategy has an impact on decision making phase. As 
we mentioned, sequence-sets are embedded in data space, which 
can be projected into feature spaces. Hence, there are various data 
mining methods that can be used to analyze datasets embedded in 
data space and feature spaces. The new paradigm shift proposed by 
Daoud [5] is constructed upon the following new concept: we have 
to map any sequence-based dataset into various feature spaces in or-
der to recognize, analyze, and visualize its hidden information struc-
tures from different angles using suitable data mining methods. In 
other words, the new paradigm shift has one principle, which is the 
extension principle of data projection. We define the extension prin-
ciple of data projection as: we have to extend the data life cycle by 
mapping datasets into various feature spaces, and consequently, we 
have to extend adaptability and applicability of methods used in ana-
lyzing datasets. In the next part of this section, we present the theo-
retical extension of Dij(γ1) in any linear and nonlinear feature spaces. 
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Definition 1 
Let Class of Spaces =  {Sp1, Sp2, Sp3, …} be the set of all possible 
feature spaces into which data points can be projected. Let ϕ be a 
well-defined transformation function that can be used to map data 
points from one feature space to another. Thus, using the extension 
principle of data projection, the data life cycle always can be extend-
ed by finding a transformation function ϕ that can be used to map 
data points from one feature space to another. 

Definition 2 
Let Σ =  {σ1, σ2, …, σr} be a finite alphabet. Without loss of generali-
ty, let S(j) =  {Seq1

( j ), Seq2
( j ), …, Seqn

( j ) } be a set of sequences, where 
Seqi

( j) is the ith sequence of the jth and 
		   . The expansion form of a sequence Seqi

( j) is de-
fend as			                      , where	                    .
A set of sequences S(j) is either a heterogeneous sequence-set or a 
homogeneous sequence-set. 

As we mentioned earlier in this paper, the data points under con-
sideration are heterogeneous sequence-sets (e.g., genomes of virus-
es). For example, the genome of influenza virus is a segmented ge-
nome. The influenza genome has eight segments, each segment en-
coded into either 1 or 2 proteins [5,6,18-20]. Each protein has a bi-
ological function, and implicitly it has a nucleotide composition. 
The encoded proteins have different biological functions and dif-
ferent nucleotide compositions.

Without loss of generality, let Ξ= {S(1), S(2), S(3),…, S(u)} be a col-
lection of heterogeneous sequence-sets. Let X be a (p × 1) feature 
vector (i.e., X ∈ Rp). The feature vector X is a function from a data 
space to a feature space, X:Σ* - ∈ → Rp. Let Ω = {ω1, ω2, …, ωp} be a 
set of strings (i.e., words, n-grams as defined in Cohen [21]), where 
ωl ∈ (Σ*- ∈)(l = 1, 2, …, p), and ∈ is the empty string. Let X1 ,X2, …, 
Xp be the features that constitute the feature vector X, where Xi rep-
resents the number of occurrences of the string ωl in a sequence Se-
qi

(j) ∈ S(j), where S(j) ⊂ (Σ* - ∈). Using the extension principle of 
data projection, define a transformation function ϕ(X): Rp → Rp’, 
such that p’ ≥ p. A transformation function ϕ(X) can be defined ei-
ther as (1) a linear function, or as (2) a nonlinear function.

A transformation function is a mapping from one feature space 
(i.e., Rp) to another feature space (i.e., Rp’). It is either a linear or a 
nonlinear function. A feature space associated with a linear transfor-
mation function is called a linear feature space. A feature space asso-
ciated with a nonlinear transformation function is called a nonlin-
ear feature space. Using the extension principle of data projection, 
we have to extend the adaptability and applicability of the distance 
measure and the algorithms proposed in Daoud et al.’s studies [5,8]. 
A feature vector is a random vector. A function of feature vector is a 
feature vector. Suppose that ϕ(X) has the mean μ =  Eϕ(X) =  0 and 

variance-covariance matrix ψ(ϕ(X)) = Eϕ(X)ϕ(X)’. ψ(ϕ(X)): Rp → 
Rp’ × p’ is another mapping from Rp space to Rp’ × p’ space. After map-
ping sequence-sets form data space to feature space Rp’ × p’ using the 
composite transformation function ψ(ϕ(X)), and to proceed fur-
ther, we have to extend the theoretical derivations of Dij(γ1) in any 
linear and nonlinear feature spaces.

Definition 3
Using principle (P1), mapping any heterogeneous sequence-set 
((S(j) ⊂(Σ* - {∈}), where S(j)∈ Ξ) into the feature space Rp can be 
achieved by mapping every sequence Seqi

(j) ∈ S(j) into the feature 
space Rp using a well defined (p × 1) feature vector X. Hence, we 
result with a set of real-valued vectors		  . Using principle 
(P1), mapping any heterogeneous sequence-set ((S(j)⊂(Σ* - {∈}), 
where S(j)∈ Ξ) into the feature space Rp can be achieved by mapping 
every sequence Seqi

(j)∈ S(j) into the feature space Rp using a well de-
fined (p × 1) transformation function ϕ(X). Hence, we result with a 
set of feature vectors {ϕ (      )       . Using principle (P1), mapping 
any heterogeneous sequence-set (S(j) ⊂(Σ* - {∈}), where S(j) ∈ Ξ) 
into the feature space Rp’ × p’ can be achieved by mapping  into the 
feature space Rp’×p’ using the (p×p) composite mapping ψ (ϕ(X(i))).

The following theorems represent the extension of theoretical 
derivations of the metric Dij(γ1) proposed in Daoud et al.’s studies 
[5,8] in any linear and nonlinear feature spaces, and consequently 
to justify the extension of the sequence-set analysis in any linear 
and nonlinear feature spaces. We use the generic derivation method 
used to obtain GPCA model (proposed by Flury in 1983 [14]) in 
the following theorem. It should be noted that GPCA is a statistical 
and computational generalized model of PCA, whereas the metric 
Dij(γ1) is a generalized metric.

Theorem 1
The distance between two heterogeneous sequence-set S(j1) and 
S(j2), where S(j1) and S(j2) ∈ Ξ, is defined by the maximum deviation 
in variation between ψ (ϕ(X(j1))) and ψ (ϕ(X(j2))) embedded in the 
feature space Rp’ × p’.

Proof: The extended distance measure δ is a mapping from 
Rp’ × p’ × Rp’ × p’→R+. Hence, let κ be a non-trivial vector in Rp’. Define 
the linear combination G = κ’(ϕ(X(j1)-ϕ(X(j2))). The required dis-
tance is defined in terms of maximum deviation in variation.

max Var [G]

subject to: κ ∈ Rp’ and norm(κ) = 1. Since ϕ(X(j1)) and ϕ(X(j2)) are 
statistically independent, we have:

Var[G] = Var[κ'(ϕ(X(j1)) - ϕ(X(j2)))]

(2)

(3)
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Var[G] = Var[κ’(ϕ(X(j1))] - Var[κ’ϕ(X(j2))]

Var [G] = E [κ' ϕ(X(j1))ϕ(X(j1))’κ] - E [κ’ ϕ(X(j2))ϕ(X(j2))’κ]

Var [G] =  κ' [Eϕ (X(j1)) ϕ (X(j1))’ - Eϕ (X(j2)) ϕ (X(j2))’]κ

Var [G] =  κ’ [ ψ (ϕ (X(j1))) - ψ (ϕ (X(j2)))]κ

Maximizing Var[G] can be achieved by finding κ in Rp’ such that 
norm(κ)is equal to one. Let  					  
	             be the ordered generalized eigenvalues associated 
with the generalized eigenvectors κ1,κ2,κ3,κ4,…,κ(p’-1),κ(p’) of the ma-
trix [Ψ(ϕ (X(J1))-Ψ(ϕ (X(J2)))] respectively. The maximum devia-
tion in variation between Ψ(ϕ (X(j1))) and Ψ(ϕ (X(j2))) is given by 
the largest generalized eigenvalue 	 associated with the general-
ized eigenvector κ1. Hence, the generalized distance δ is defined by:

 δ(ψ (ϕ (X(j1))), ψ (ϕ (X(j2))))
=  |κ1’ [ ψ (ϕ (X( J1))) - ψ (ϕ (X( J2)))]κ1|

We used the key word generalized to differentiate the extension 
of Dij(γ1)in any linear and nonlinear feature spaces from the basic 
linear feature space associated with the basic transformation func-
tion ϕ(X) = (X1, X2, …, Xp)’. Using the extension principle of data 
projection, the following theorem shows that the proposed general-
ized distance measure δ is a metric. The theorem is a generalization 
to the theorem given in Daoud’s study [5].

Theorem 2
The generalized distance measure δ(Ψ(ϕ(X(j1))),Ψ(ϕ(X(j2)))): 
Rp’ × p’ × Rp’ × p’ → R+ is a metric.
Proof: To show that δ(Ψ(ϕ(X(j1))), Ψ(ϕ(X(j2)))) is a metric, 
δ(Ψ(ϕ(X(j1))), Ψ(ϕ(X(j2)))) must satisfies the following properties.
(1) Reflexive: For any heterogeneous sequence-set
S(j1)∈ Ξ, δ(ψ (ϕ (X(j1))), ψ (ϕ (X(j2)))) = 0 iff  | κ1’ [ ψ (ϕ (X(j1))) - ψ 
(ϕ (X( J2)))]κ1 | = 0 iff 
[ψ (ϕ (X(j1))) = ψ (ϕ (X(j2)))] (since κ1 is a non-trivial vector embed-
ded in Rp’).
(2) Symmetric: For any two heterogeneous sequence-sets S(j1) and 
S(j2) ∈ Ξ,
δ(ψ (ϕ (X(j1))), ψ (ϕ (X(j2))))= | κ1’ [ ψ (ϕ (X(J1))) - ψ (ϕ (X(J2)))]κ1 |
= |(-1)|| κ1’ [ ψ (ϕ (X(J2))) - ψ (ϕ (X(J1)))]κ1 |
= |(-1)|| κ1’ [ ψ (ϕ (X( J2))) - ψ (ϕ (X( J1)))]κ1 |
= | κ1’ [ ψ (ϕ (X( J2))) - ψ (ϕ (X( J1)))]κ1 |
= δ(ψ (ϕ (X(j2))), ψ (ϕ (X(j1))))
(3) Positive: For any two heterogeneous sequence-sets S(j1) and 
S(j2) ∈ Ξ,

δ(ψ (ϕ (X(J1))), ψ (ϕ (X(J2)))) = | κ1’ [ψ (ϕ (X(J1)))-ψ (ϕ (X(j2)))]κ1 |
= |α1|≥0, where α1 ∈ R
(4) Transitive: For any heterogeneous sequence-sets S(j

1
),S(j

2
), and 

S(j
3
) ∈ Ξ, δ(Ψ(ϕ(X(j

1
))), Ψ(ϕ(X((j

2
))))

The proposed generalized metric δ can be used in performing 
classification and clustering tasks on heterogeneous sequence-sets 
in any linear and nonlinear feature spaces. The efficiency and suffi-
ciency of using the mean of the distance values of δ instead of using 
the minimum or the median of the distance values in solving the 
classification problem of heterogeneous sequence-sets in any linear 
and nonlinear feature spaces are presented below. The following 
theorem assumes that the proposed metric with various transfor-
mation functions and data sets is a random variable with unknown 
distribution. Therefore, a random sample of the proposed metric 
should be considered. 

Theorem 3 
Given classes of heterogeneous sequence-sets Ξ1, Ξ2, …, Ξk (la-
beled datasets). Given an unlabeled query sequence-set QSS. The 
label of the given query sequence-set QSS is defined by:  

which is the best classification decision compared with the classifi-
cation decisions:

where

and

where 

In this context, |Ξi| represents the number of sequence-sets in Ξi. 

a 1

a 1 < a 2 < a 3 < a 4 < <

<

= |κ’1 [Ψ(ϕ(X(j1)))-Ψ(ϕ(X((j
2
)))] κ1 |

= |κ’1 [Ψ(ϕ(X(j
1
)))-Ψ(ϕ(X((j

2
))) + Ψ(ϕ(X((j

3
))) -Ψ(ϕ(X((j

3
)))] κ1 |

= |κ’1 [[Ψ(ϕ(X((j
1
)))-Ψ(ϕ(X((j

3
)))]+[(Ψ(ϕ(X((j

3
)))-Ψ(ϕ(X((j

2
)))]] κ1 |

= |[κ’1 [Ψ(ϕ(X(j
1
)))-Ψ(ϕ(X((j

3
))) κ1] + [κ’1 Ψ(ϕ(X((j

3
)))-Ψ(ϕ(X((j

2
)))

κ1]]|≤|κ’1 [Ψ(ϕ(X((j
1
))-Ψ(ϕ(X((j

3
)))] κ1 | + |κ’1[Ψ(ϕ(X((j

3
))) 

- Ψ(ϕ(X((j
2
)))] κ1 |

= δ(Ψ(ϕ(X(j
1
))),Ψ(ϕ(X((j

3
)))) + δ(Ψ(ϕ(X((j

3
))),Ψ(ϕ(X((j

2
))))

(4)

(5)

(6)

(7)

(8)

N i

X

] j = 1

N i

N i
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Proof 
∀i, measuring the distance between the unlabeled query se-
quence-set S(QSS) with every S(j)∈ Ξi using the proposed generalized 
metric δ(,), we result with a sample of distance values δi1, δi2,…,  δi|Ξi|, 
where δij = δ(Ψ(ϕ(X(j))), Ψ(ϕ(X(QSS)))). In addition, δi(1), δi(2), …, δi(Ξi) 

represent the ordered sample of δi1, δi2, …, δiΞi. Without loss of gen-
erality, suppose that the mean and the variance of the ith sample are 
denoted by  ξi and ϑi respectively (i.e., E[δi] = ξ i and Var[δi] = ϑi). Let 
minΞi =δi(1)be the minimum of the ith sample. Let
if |Ξi| is odd, otherwise let                                                                         if |Ξi | is 
even. Let δΞi be the mean of the ith sample.

Thus,       is the best parameter that can be used in a classification 
decision rule to classify composite data points under consideration.

Moreover, based on the consistency definition given in Hogg and 
Craig [22] and using Chebyshev’s inequality, the consistency of the 
proposed decisions can be evaluated as follows: 

and

and

Now:

Definition 4 (classification) 
Let QSS be a query sequence-set. Let Ξ1, Ξ2, …, Ξk be k classes of 
heterogeneous sequence-sets. Let 	        be the distance values re-
sults from comparing the QSS with each sequence-set in Ξi. With-
out loss of generality, suppose that                   has the normal distribu-

tion with mean ξi and variance ϑi. Hence, the sample mean of the 
generalized distance metric δΞi is a sufficient statistic for ξi. 

The proof of the sufficiency condition of the sample mean of the 
normal distribution is straightforward [22] and it can be used to 
prove that the sample mean of the generalized distance metric δΞi is 
a sufficient statistic for ξi.The joint probability density function of 	
                  can be written as: 

(12)

(13)

(14)

(15)

We just factorized the joint probability density function of  	
into two factors. The first factor depends upon              , while the 
second factor depends upon ξi and            . Hence, under the as-
sumption that ϑi is known, we conclude that δ is a sufficient statistic 
for ξi (Sufficiency theorem [22]). In accordance with the proposed 
extension principle of projecting composite data points into various 
linear or nonlinear feature spaces, we use the generalized metric δ, 
instead of Dij(γ1), to modify the classification and clustering algo-
rithms proposed in Daoud’s study [5]. The adapted algorithms can 
be used in classifying and clustering composite data points in any 
linear and nonlinear feature spaces. 

In the next part of this section, we present the necessary and suf-
ficient condition for generating a heterogeneous sequence-set from 
a real heterogeneous sequence-set (i.e., real composite data point) 
by using simulation. 

Definition 5 
Let Σ be a finite alphabet. Let Ω = {ω1,ω2,…,ωp} be a set of strings, 
where ωl ∈ (Σ*- ∈)(l = 1,2,…,p),and ∈  is the empty string. Let S(j) 
= {Seq1

(j),Seq2
(j),…,Seqn

(j)} be a set of heterogeneous sequences, 
where Seqi

(j) is the ith sequence of the jth sequence-set. Let X = (X-

1,X2,X3,…,Xp )’ be a (p × 1) feature vector embedded in Rp, where 
Xl represents the occurrences of ωl (l = 1,2,…,p). A necessary and 
sufficient condition for generating a heterogeneous sequence-set 

N i
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SJ = {Seq1
(j),Seq2

(j),…,Seqn
(j)} from a real sequence-set S(j) is:∀i,     

(x)converges in distribution to FX(x) as n’→ ∞, where FX
(i) (x) is the 

distribution function of the nucleotide composition of Seqi
(j), and 

n’∈  R is proportionally related to the length of Seqi
(j). 

In definition (5), we presented the necessary and sufficient condi-
tion for generating a heterogeneous sequence-set from a real hetero-
geneous sequence-set by using simulation. The robust sequence-set 
generator is built upon using built-in matlab functions, and it has the 
following computational steps: the nucleotide composition of each 
sequence in a given real heterogeneous sequence-set is estimated to 
generate a simulated sequence with longer length, and hence, to 
compose a simulated heterogeneous sequence-set. 

We remark the following: A transformation function is a function 
of random feature vectors. It is a measurable function. A function of 
random feature vectors is a random feature vector. Therefore, a 
transformation function is measurable and parametric-free (i.e., sta-
tistic). Hence, we aim to observe the effect of linear and non-linear 
transformation functions on the classification and clustering results 
using Dij(γ1). In this context, the formulation of any transformation 
function is based on the following: (1) linearity or non-linearity of 
the random feature vectors, and (2) use of special functions of ran-
dom feature vectors, for example, first order statistic, last order sta-
tistic, and standard deviation. Different transformation functions 
can be used to map sequence-sets into different feature spaces. 
Composite transformation is another alternative for mapping se-
quence-sets. In this paper, we aim to compare linear vs no-linear 
transformation functions that can be used in mapping composite 
data points (i.e., heterogeneous sequence-sets) into feature spaces. 

In this section, we presented the extended theory of the proposed 
largest generalized eigenvalue based distance metric Dij(γ1) in arbi-
trary feature spaces. In addition, we presented the theoretical prop-
erties of Dij(γ1) in arbitrary feature spaces as a metric, and the effi-
ciency of using the decision rule     in supervised classification 
compared with the decision rules minΞi and medianΞi. Moreover, we 
presented the sufficiency of using the decision rule      in supervised 
classification of heterogeneous sequence-sets. In the next section, 
experiments and results are presented. 

Results 

The experiments and results are presented in this section. We per-
form two experiments to analyze heterogeneous sequence-sets in 
linear and nonlinear feature spaces. The objective of the first experi-
ment is as follows: we focus on graphically analyzing patterns (clus-
ters, dispersion maps of clusters, limiting dispersion maps of clus-
ters) in real heterogeneous sequence-sets, whereas, the objective of 
the second experiment is as follows: we focus on testing the effect 

of the lengths of sequences in sequence-sets generated by simula-
tion on classification and clustering results.  

The first experiment: analyzing real heterogeneous se-
quence-sets 
In this subsection, we present the first experiment. In the first ex-
periment, we focus on analyzing real heterogeneous sequence-sets 
in linear and non-linear feature spaces. The heterogeneous se-
quence-sets under consideration are segmented genomes of the in-
fluenza virus. The genome has eight segments, each segment en-
coded into one or two proteins. The encoded proteins have differ-
ent biological functions. The segmented genome of influenza virus 
has highly mutation rates. Therefore, the influenza virus has nega-
tive impacts on the public health. The main biological features of 
the influenza virus are (1) virus type, (2) virus subtype, and (3) 
hosts. The main types of the influenza virus are A, B, and C. The in-
fluenza A-virus has various subtypes, for example, H1N1, H2N1, 
H3N2, and H5N1. The subtype variations are embedded in the 
surface proteins of influenza genome. The main hosts of the influ-
enza virus are avian, human, and swine. The main biological fea-
tures of the influenza virus are expected to be hidden in the genetic 
text of the influenza genome (Fig. 4). Each biological feature is ex-
pected to be represented by one or more hidden information struc-
tures in the genetic text of the influenza genome. Therefore, mining 
the genetic text of the influenza virus is the key point in analyzing 
the biological features of the influenza genome. To be consistent 
with the scope and objectives of this paper, we present only the use-
ful biological details of the influenza genome [19,20,23-25]. We 
downloaded real datasets from NCBI’s Influenza Virus Sequence 
Database [26]. The real datasets are the segmented genomes of the 
influenza virus (real heterogeneous sequence-sets). We download-
ed 30 segmented genome of the influenza virus (type: A, subtype: 
H1N1, host: assorted, geographical areas: assorted) to represent 
class Ξ1, 30 segmented genome of the influenza virus (type: B, host: 
human, geographical areas: assorted) to represent class Ξ2, and 45 
segmented genome of the influenza virus (type: A, B , subtype of A: 
H1N1, host: assorted, geographical areas: assorted) to represent 
unlabeled heterogeneous sequence-sets UnLabeled. We use Ξ1, Ξ2, 
and UnLabeled to perform classification experiments in linear and 
nonlinear feature spaces using δ. We combine Ξ1 and Ξ2 (Ξ. =  Ξ1 to 
perform clustering experiments in linear and nonlinear feature 
spaces using δ ̅. 

To be consistent with research objective of this paper (see the re-
search statement), we formulate the transformation functions as ei-
ther linear or nonlinear transformation functions (arbitrary). There 
is no restriction on how to define a transformation function(us-
er-defined), but certainly it depends on the complexity of compos-
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ite data points, and the type and the quality of targeted information 
in composite data points under consideration (e.g., to minimize the 
classification errors). We perform the classification and clustering 
experiments using two transformation functions in order to show 
the impact of extracted information from datasets under consider-
ation on the classification and clustering results in linear and non-
linear feature spaces, and for illustration purposes, the classification 
and clustering results are projected into a two-dimensional space. 

The results are collected and presented in Figs. 5 and 6. To distin-
guish the research work presented in this paper from the research 
work presented in Daoud’s study [5], we focus on graphically ana-
lyzing patterns in the datasets under consideration from the follow-
ing angles: (1) the exact and limiting dispersion maps of each clus-
ter, and (2) the distance between clusters (i.e., margins between 
clusters). In other words, we aim to graphically analyze patterns in 
datasets embedded in high dimensional linear and non-linear fea-
ture spaces without using classical evaluation measures that are usu-
ally used in evaluating classification and clustering results (i.e., to 
approximately deduce the empirical conclusions directly from re-
sults). The empirical conclusions approach is another approach 
that can be used in X-raying and analyzing the existing patterns in 
datasets under consideration using the following (empirical analysis 
based on deterministic parameters): the Euclidean distance be-

tween clusters, the exact dispersion map, the limiting dispersion 
map, the expected number of clusters (and/or sub-clusters), and 
the observed number of clusters (and/or sub-clusters). It is away 
from assuming mathematical statistics assumptions to make mathe-
matical statistics decisions on clustering and classification results. In 
this paper, the four feature variables X1, X2, X3, and X4 represent the 
occurrences of the possible four 1-grams in each bio-sequence in a 
sequence-set respectively. The feature extraction technique used in 
the experiments is the n-gram technique. The n-gram feature ex-
traction technique is well known technique in natural language pro-
cessing. The feature extraction mechanism is given in definition 3. 
In the future work, we aim to analyze the occurrences of 2-grams 
and 3-grams in each bio-sequence in a sequence-set using linear 
and non-linear transformation functions (the results are not shown 
in this paper due to space limitations). 

To answer the research questions proposed in this paper, we use 
two experimental approaches to reach the empirical conclusions on 
analyzing heterogeneous sequence-sets in linear and non-linear fea-
ture spaces. In the first approach, we use the real datasets that are 
previously defined in this section to perform the classification and 
clustering experiments. In the second approach, we use datasets 
generated by simulation using the empirical distributions of the nu-
cleotide compositions of the real datasets that are previously de-

Fig. 4. Analyzing the segmented genome of influenza virus.
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Fig. 5. (Continued to the next page).

A

B

Supervised Classification of Data Sets Generated by Simulation (Non-Linear Kernel Mapping)

Supervised Classification of Data Sets Generated by Simulation (Linear Feature Mapping)

Supervised Classification of Data Sets Generated by Simulation (Non-Linear Kernel Mapping)

Supervised Classification of Data Sets Generated by Simulation (Linear Feature Mapping)
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Fig. 5. (Continued from the previous page) (A) Classification of heterogeneous sequence-sets (real data sets): (1) non-linear transformation 
function (ϕ2 (X)), and (2) linear transformation function (ϕ1 (X)). (B) Classification of heterogeneous sequence-sets generated by simulation 
identical to real data sets (sequence length, ×200): (1) non-linear transformation function (ϕ2 (X)), and (2) linear transformation function 
(ϕ1 (X)). (C) Clustering of heterogeneous sequence-sets (real data sets): (1) non-linear transformation function (ϕ2 (X)), and (2) linear trans-
formation function (ϕ1 (X)). (D) Clustering of heterogeneous sequence-sets generated by simulation identical to real data sets (sequence 
length, ×200): (1) non-linear transformation function (ϕ2 (X)), and (2) linear transformation function (ϕ1 (X)).

C

D

Unsupervised Classification of Data Sets Generated by Simulation (Non-Linear Kernel Mapping)
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Fig. 6. (Continued to the next page).
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Fig. 6. (A) Classification of heterogeneous sequence-sets generated by simulation (sequence length, ×1): (1) non-linear transformation 
function (ϕ2 (X)), and (2) linear transformation function (ϕ1 (X)). (B) Clustering of heterogeneous sequence-sets generated by simulation 
(sequence length, ×1): (1) non-linear transformation function (ϕ2 (X)), and (2) linear transformation function (ϕ1 (X)). (C) Classification of 
heterogeneous sequence-sets generated by simulation (sequence length,×100): (1) nonlinear transformation function (ϕ2 (X)), and (2) linear 
transformation function (ϕ1 (X)). (D) Clustering of heterogeneous sequence-sets generated by simulation (sequence length, ×100): (1) 
non-linear transformation function (ϕ2 (X)), and (2) linear transformation function (ϕ1 (X)).

C

D Unsupervised Classification of Data Sets Generated by Simulation (Non-Linear Kernel Mapping)

Unsupervised Classification of Data Sets Generated by Simulation (Linear Feature Mapping)

Unsupervised Classification of Data Sets Generated by Simulation (Non-Linear Kernel Mapping)
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fined in this section to perform the classification and clustering ex-
periments. The generated datasets have the following characteristic: 
the sequence length of each sequence in a generated sequence-set is 
multiplied by the factor 200 in order to reach a good approximation 
to the exact distribution of nucleotide composition (Limiting Dis-
tribution). For each transformation function, the empirical pattern 
analysis of classification and clustering results is given below. 

In this subsection, we present a comparison between the two 
transformation functions ϕ2(X) (non-linear function, quadratic in 
all feature-axises) and ϕ1(X) (Linear function). Both functions 
have the dimensionality: p = 4. The classification results of ϕ1(X) 
versus ϕ2(X) are given in Fig. 5A and 5B, respectively. Fig. 5A rep-
resents the classification results using real datasets in classes Ξ1, Ξ2, 
and UnLabeled. Fig. 5B represents the classification results of data-
sets generated by simulation using the limiting distributions of the 
nucleotide compositions of real datasets in classes Ξ1, Ξ2, and Un-
Labeled. Each figure is consisting of four sub-figures. The upper 
left sub-figure represents the distance of each unlabeled composite 
data point in UnLabeled with respect to classes Ξ1, Ξ2 respectively 
using ϕ1(X) (inclusively, visualize the classification errors and the 
variation of each cluster). The upper right sub-figure represents 
the supervised classification result (scatter diagram) of the com-
posite data points in UnLabeled using ϕ1(X). The lower left 
sub-figure represents the distance of each unlabeled data point in 
UnLabeled with respect to classes Ξ1, Ξ2 respectively using ϕ2(X) 
(inclusively, visualize the classification errors and the variation of 
each cluster). The lower right sub-figure represents the supervised 
classification result (scatter diagram) of the composite data points 
in UnLabeled using ϕ2(X). Both figures show the existence of two 
main clusters, one with high variations (upper-left) and the other 
with low variation (right-lower). Let c1 be the cluster with high 
variations and let c2 be the cluster with low variations. Both figures 
illustrate the following empirical conclusion: the distance between 
c1 and c2 in non-linear feature space ϕ2(X) is less than the distance 
between c1 and c2 in linear feature space ϕ1(X). The clusters c1 and 
c2 are well-separated. The dispersion map of c1 indicates the exis-
tence of sub-clusters. In other words, few composite data points 
are located with significant deviation in variations from the cen-
troid of c1. This empirical conclusion remains unchanged (valid) 
in the case of using the limiting distribution. The question that 
arises in this context can be summarized as follows: what is the im-
pact of the previous empirical conclusion on the biological-side? 
In this case and based on the dispersion maps of c1 (in the case of 
the exact and limiting distributions), it is clear that the genome of 

type-A H1N1-flu virus has a high mutation rate and can be housed 
by various types of hosts. To proceed further in answering the 
question, for example, if the annual vaccine is designed by select-
ing a virus with a genome close to the centroid of c1, then in this 
case, the efficiency of the produced vaccine is expected to be af-
fected with a percentage during the flu-season. In fact, it is proba-
bly the efficiency of the vaccine is expected to be reduced by a per-
centage, and consequently it has a significant impact on the public 
health. The dispersion map of c1 indicates the following: the virus 
may cause symptoms with high variations. The dispersion map of 
c2 indicates the compactness of the cluster. The dispersion map of 
c2 with respect to the limiting distribution shows a bit more varia-
tions among composite data points (i.e., sequence-sets) compared 
with the dispersion map of c2 with respect to the exact distribution 
of the nucleotide composition. Hence, type-B flu virus may causes 
symptoms with low variations, and therefore, if the annual vaccine 
is designed by selecting a virus with a genome close to the centroid 
of c2, then in this case, the efficiency of the produced vaccine is ex-
pected to be affected with a very small percentage during the 
flu-season. The clustering results of ϕ1(X) versus ϕ2(X) are given in 
Fig. 5C and 5D, respectively. It should be noted that some of the 
empirical conclusions deduced from the classification results can 
be deduced from the clustering results. For example, the main clus-
ters c1 (right cluster, see Fig. 5C and 5D) and c2 (left cluster, Fig. 5C 
and 5D) are well-separated. The cluster c1 has sub-clusters, but we 
can not provide biological interpretations about the existence of 
sub-clusters due to lack of biological/medical information associat-
ed with the real data sets under consideration (i.e., segmented ge-
nome of flu-virus).

The second experiment: analyzing simulated-based hetero-
geneous sequence-sets 
In this subsection, we present the second experiment. In the sec-
ond experiment, we focus on testing the effect of the lengths of 
sequences in sequence-sets generated by simulation on classifica-
tion and clustering results in linear and non-linear feature spaces. 
In the real world, sometimes we face lack of data or information 
about a specific biological phenomenon. In order to overcome 
this obstacle, we generate datasets using simulation. Simulation is 
a well-known technique in the areas of statistical computing, per-
formance modeling, and other research areas. We downloaded 
three types of segmented genomes of influenza virus from NCBI 
(Influenza Virus Resource) [26]. Those types are randomly se-
lected: (1) Real-Dataset(1): influenza A virus (H1N1, Human, 
USA, 2011), (2) Real-Dataset(2): influenza B virus (Human, 
Thailand, 2012), (3) Real-Dataset(3): influenza C virus (Swine, 
USA, 2011). We use the three real datasets of influenza virus (i.e., 
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The results of clustering 
In this subsection, we discuss the results of clustering in linear and 
non-linear feature spaces. In this experiment, the composite data 
points are generated by simulation, and they contain three main 
clusters. The best cases of clustering results indicate the existence of 
the three main clusters, whereas, the worst cases of clustering re-
sults devote the following empirical conclusion: there is no suffi-
cient scientific evidence support the existence of the three different 
main clusters in composite data points under consideration. 

In this section, we presented the classification and clustering re-
sults in linear and non-linear feature spaces. The experiments are 
performed using composite data points generated by simulated. 
Each composite data point represents a heterogeneous sequence-set. 
In the next section, we present conclusions and future work. 

Discussion 

In this section, we present conclusions and future work. The main 
contributions of this paper can be summarized as follows (Fig. 7). 
We extended the theoretical-side of the largest generalized eigenval-
ue-based distance measure Dij(γ1) in any linear and non-linear fea-
ture spaces. We proved that the proposed measure Dij(γ1) in Daoud’ 
study [5,6,8] satisfies the properties of a metric space under any lin-
ear or non-linear transformation function. We proved the sufficien-
cy and efficiency of using the decision rule        (i.e., mean of Dij(γ1)) 
in classification compared with the decision rules minΞi and medi-
anΞi. We showed the impact of the sequence-length n’ used in gen-
erating composite data points on classification and clustering results 
in linear and non-linear feature spaces. We proposed two new main 
concepts in this context: the exact dispersion map and the limiting 
dispersion map of a cluster. The feature vector used in this paper 
represents the occurrence of all possible single nucleotides (i.e., 
1-grams) in each sequence of a heterogeneous sequence-set. The 
variations of 1-grams have an important application in genetic evolu-
tion (Single Nucleotide Polymorphisms). In the future work, we 
aim to analyze the impact of using the occurrences of 2-grams and 
3-grams in heterogeneous sequence-sets on classification results in 
any linear and non-linear feature spaces using various designs of ex-
periments. 
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three segmented genomes) to generate three random samples of 
segmented genomes using simulation. In other words, we gener-
ate composite data points by using only one real composite data 
point from each virus type as a prototype. We use the nucleotide 
compositions of sequences in each randomly selected prototype 
sequence-set to generate a sample of composite data points from 
each virus type. Each random sample has the size 20. Discovering 
the impact of the parameter n’ given in (Definition 5) on the per-
formance of the clustering task using the largest generalized ei-
genvalue-based distance metric Dij(γ1) in feature space can be 
achieved by the following design of experiment. We generate the 
three random samples at n’ = |Seqi

(j)|, 10 × |Seqi
(j)|, 20 × |Seqi

(j)|, 
30 × |Seqi

(j)|, 40 × |Seqi
(j)|, 50 × |Seqi

(j)|, and 100 |Seqi
(j)|, where 

|Seqi
(j)| represent the sequence length of Seqi

(j), ∀i and ∀j. The 
generated composite data points that are used in performing clus-
tering experiment are different from the composite data points 
that are used in performing classification experiment. However, 
both collections of composite data points are generated using the 
same prototypes (i.e., same real composite data points). As we 
mentioned in this section, we aim to compare the impact of the 
sequence length generated by simulation on calcification and 
clustering results. There are three factors that may have an impact 
on the calcification and clustering results: (1) the selected feature 
vector (in this paper: X represents the occurrences of all-possible 
1-grams), (2) the limiting distribution of the nucleotide compo-
sition (i.e.,n’), and (3) the transformation functions. In this paper, 
we present the worst case (n’ = | Seqi

(j)|) and the best case (n’ =  
100 × | Seqi

(j)|) for the calcification and clustering results using the 
proposed transformation functions due to space limitations. 
Those results are illustrated in  Fig. 6A–6D

The results of classification  
In this subsection, we discuss the results of classification in linear and 
non-linear feature spaces (only two-classes classification problem 
considered). The best cases for the classification results indicate the 
existence of the two main clusters. The two main clusters are well 
separated. The distance between the two centroids is vary from one 
feature space to another. It depends upon the mathematical defini-
tion of transformation functions. In this subsection, we can not ana-
lyze the dispersion maps of each cluster since the composite data 
points used in this experiment are generated using one prototype of 
nucleotide compositions for each class of sequence-sets. The worst 
cases for the classification results indicate the impact of the sequence 
length n’ on supervised classification in linear and non-linear feature 
spaces. The worst cases empirically indicate the following: there is 
no sufficient scientific evidence support the existence of two differ-
ent clusters in composite data points under consideration. 
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